■モーリーの奇跡にはおよばないが・・・(その6)
【1】三角形の面積を7等分するラウスの定理
[Q]与えられた三角形の各辺を2:1に内分する点をとって対頂点と結んで作った三角形の面積は,もとの三角形の面積の1/7であることを示せ.
[A]3×3の格子を考える.もとの三角形の頂点を(1,0),(3,1),(0,3)に移す線形変換をφとする.線形変換で面積は変化するが面積比は変わらない.このとき,中の三角形は(1,1),(2,1),(1,2)に移される.ピックの公式により面積はそれぞれ7/2,1/2,従って面積比は7:1である.
===================================
重心座標による計算ではないが、一般化しておきたい
[Q]各頂点からその対辺の3等分点を全部、合計6本の線で結ぶ。元の三角形は小三角形、小四角形、小五角形、小六角形に分割される。中央にある小六角形の面積は,もとの三角形の面積の何分の1だろうか?
この問題ではピックの公式は使えそうにない。
そこで、細矢治夫先生の計算を参考にして、わかっている点を中線上に配置する。二等辺三角形を仮定しても面積比は変わらない.
[1/3,3/5,2/3,3/4,1]
3辺をそれぞれ、2:2n:2に分割すると
x=2n/(2n+6)=n/(n+3),y=2n/2(2n+3)=n/(2n+3)
3等分(n=1)では、x=1/4,y=1/5
5等分(n=3)では、x=1/2,y=1/3
したがって、3辺をそれぞれ1:n:1に分割すると
[1/(n+2),(n+2)/(2n+3),n/(2n+3),(n+2)/(n+3),1]、
===================================
中線上で交差する交点を求めると、
(x-1/(n+2)):1/n=((n+2)/(2n+3)-x):(n+2)/(2n+3)
(n+2)x/(2n+3)-1/(2n+3)=(n+2)/n(2n+3)-x/n
(n+1)(n+3)x/n(2n+3)=(2n+2)/n(2n+3)
x=2/(n+3)
(x-(n+2)/(n+3)):(n+2)/(n+3)=(1-x):(n+2)/n
(n+2)x/n-(n+2)^2/n(n+3)=(n+2)/(n+3)-(n+2)x/(n+3)
(n+2)(2n+3)x/n(n+3)=2(n+1)(n+2)/n(n+3)
x=2(n+1)/(2n+3)
===================================
さらに続けると
(2/(n+3)-x):x=((n+2)/(2n+3)-2/(n+3)):(n+2)/(2n+3)
2(n+2)/(n+3)(2n+3)-(n+2)x/(2n+3)=n(n+1)x/(n+3)(2n+3)
2(n+2)/(n+3)(2n+3)=(2n^2+6n+6)x/(n+3)(2n+3)
x=2(n+2)/(2n^2+6n+6)=(n+2)/(n^2+3n+3)
(2(n+1)/(2n+3)-(n+2)/(n+3)):(n+2)/(n+3)=(x-2(n+1)/(2n+3)):x
(n+2)x/(n+3)-2(n+1)(n+2)/(n+3)(2n+3)=nx/(n+3)(2n+3)
2(n^2+3n+3)x/(n+3)(2n+3)=2(n+1)(n+2)/(n+3)(2n+3)
x=(n+1)(n+2)/(n^2+3n+3)
===================================
小四角形
2/(n+3)・(n+2)/(n^2+3n+3)
小三角形
((n+2)/(n^2+3n+3)+(n+2)/(2n+3))・((n+2)/(2n+3)-(n+2)/(n^2+3n+3))=(n+2)^2/(2n+3)^2-(n+2)^2/(n^2+3n+3)^2
-(2/(n+3)-(n+2)/(n^2+3n+3))・(n+2)/(n^2+3n+3)=-2(n+2)/(n+3)(n^2+3n+3)-(n+2)^2/(n^2+3n+3)^2
-((n+2)/(2n+3)-2/(n+3))・(n+2)/(2n+3)=-(n+2)^2/(2n+3)^2+2(n+2)/(n+3)(2n+3)
=2(n+2)/(n+3)(2n+3)-2(n+2)/(n+3)(n^2+3n+3)
小六角形
((n+2)/(2n+3)-2/(n+3))・(n+2)/(2n+3)=(n+2)^2/(2n+3)^2-2(n+2)/(n+3)(2n+3)
((n+2)/(2n+3)+(n+2)/(n+3))・((n+2)/(n+3)-(n+2)/(2n+3))=(n+2)^2/(n+3)^2-(n+2)^2/(2n+3)^2
(2(n+1)/(2n+3)-(n+2)/(n+3))・(n+2)/(n+3)=2(n+1)(n+2)/(n+3)(2n+3)-(n+2)^2/(n+3)^2
=2(n+1)(n+2)/(n+3)(2n+3)-2(n+2)/(n+3)(2n+3)
小三角形
((n+2)/(n+3)+(n+1)(n+2)/(n^2+3n+3))・((n+1)(n+2)/(n^2+3n+3)-(n+2)/(n+3))=(n+1)^2(n+2)^/(n^2+3n+3)^2-(n+2)/(n+3)
-(2(n+1)/(2n+3)-(n+2)/(n+3))・(n+2)/(n+3)=-2(n+1)(n+2)/(n+3)(2n+3)+(n+2)^2/(n+3)^2
-((n+1)(n+2)/(n^2+3n+3)-2(n+1)/(2n+3))・(n+1)(n+2)/(n^2+3n+3)=-(n+1)^2(n+2)^2/(n^2+3n+3)^2+2(n+1)^2(n+2)/(2n+3)(n^2+3n+3)
=2(n+1)^2(n+2)/(2n+3)(n^2+3n+3)-2(n+1)(n+2)/(n+3)(2n+3)
小五角形
((n+1)(n+2)/(n^2+3n+3)-2(n+1)/(2n+3))・(n+1)(n+2)/(n^2+3n+3)=(n+1)^2(n+2)^2/(n^2+3n+3)^2-2(n+1)^2(n+2)/(2n+3)(n^2+3n+3)
((n+1)(n+2)/(n^2+3n+3)+1)・(1-(n+1)(n+2)/(n^2+3n+3))=1-(n+1)^2(n+2)^2/(n^2+3n+3)^2
=1-2(n+1)^2(n+2)/(2n+3)(n^2+3n+3)
合計1
===================================
したがって、小六角形は全体の{2(n+1)(n+2)/(n+3)(2n+3)-2(n+2)/(n+3)(2n+3)}・n/(n+2)=2n^2/((n+3)(2n+3)
===================================