■チェバの定理(その3)
等チェバ線は
(√3/2−Y)・2(a+1/2)/√3・2(c−1)/√3
=(Y+√3/2)・2(a−1)/√3・2(c+1/2)/√3=consy
(√3/2−Y)(ac−a+c/2−1/2)
=(Y+√3/2)(ac+a/2−c−1/2)
√3/2(ac−a+c/2−1/2)−Y(ac−a+c/2−1/2)=√3/2(ac+a/2−c−1/2)+Y(ac+a/2−c−1/2)
√3/2(ac−a/4−c/4−1/2)
−√3/2(3a/4−3c/4)
−Y(ac−a/4−c/4−1/2)
+Y(3a/4−3c/4)
=
√3/2(ac−a/4−c/4−1/2)
+√3/2(3a/4−3c/4)
+Y(ac−a/4−c/4−1/2)
+Y(3a/4−3c/4)
両辺に共通しているのは
√3/2(ac−a/4−c/4−1/2)+Y(3a/4−3c/4)=const
ac−1/2={−3y^2−23x^2−2x+7}/(12y^2−4x^2−16x−16)
(a+c)/4={−3y^2−5x^2−11x−2)}{(2√3xy−
ac−1/2−(a+c)/4={−18x^2+9x+9}/(12y^2−4x^2−16x−16)
3(a−c)/4=−9√3y(2x+1)/(12y^2−4x^2−16x−16)
√3/2・{−18x^2+9x+9}/(12y^2−4x^2−16x−16)
+3y/2(x−1)・9√3y(2x+1)/(12y^2−4x^2−16x−16)=const
√3/2・{−18x^2+9x+9}+3y/2(x−1)・9√3y(2x+1)
=const(12y^2−4x^2−16x−16)
√3(x−1){−18x^2+9x+9}+3y・9√3y(2x+1)
=const・2(12y^2−4x^2−16x−16)(x−1)
したがって,等チェバ線は3次曲線である.
===================================