■正弦積分(その6)

 積分∫(0,∞)Πsin(x/k)/(x/k)dx=?について,

[1]k=iの場合,第3項までだと  1+1/2+1/3<2

[2]k=2i+1の場合,第6項までだと  1+1/3+・・・+1/13<2

[3]k=3i+1の場合,第10項まで計算しても  1+1/4+・・・+1/28+1/31<2

であり,このとき,

  ∫(0,∞)Πsin(x/k)/(x/k)dx=π/2

となることをみてきた.

[4]k=2^iの場合

はとくに興味津々である.

  1+1/2+1/4+1/8+・・・+1/2^(i-1)=2(1-1/2^i)<2

が成り立つからである.

===================================

【1】∫(0,∞)Πsin(x/k)/(x/k)dx=?

 k=2^i,k=3^iの場合について,阪本ひろむ氏&Mathematicaに調べてもらった.

  ∫(0,∞)sinx/xdx=π/2

  ∫(0,∞)sincxsinc(x/2)dx=π/2

  ∫(0,∞)sincxsinc(x/2)sinc(x/4)dx=π/2

  ∫(0,∞)sincxsinc(x/2)sinc(x/4)sinc(x/8)dx=π/2

  ∫(0,∞)sincxsinc(x/2)sinc(x/3)・・・sinc(x/512)dx=π/2

  ∫(0,∞)sincxsinc(x/2)sinc(x/3)・・・sinc(x/1024)dx=π/2

ここで打ち切り.

  ∫(0,∞)sinx/xdx=π/2

  ∫(0,∞)sincxsinc(x/3)dx=π/2

  ∫(0,∞)sincxsinc(x/3)sinc(x/9)dx=π/2

  ∫(0,∞)sincxsinc(x/3)sinc(x/9)sinc(x/27)dx=π/2

  ∫(0,∞)sincxsinc(x/3)sinc(x/9)・・・sinc(x/3^9)dx=π/2

  ∫(0,∞)sincxsinc(x/3)sinc(x/9)・・・sinc(x/3^10)dx=π/2

ここで打ち切り.

===================================

【2】∫(0,∞)Πsin(kx)/(kx)dx=?

  ∫(0,∞)sinc(x)=π/2

  ∫(0,∞)sinc(x)sinc(2x)dx=π/4

  ∫(0,∞)sinc(x)sinc(2x)sinc(4x)dx=π/8

  ∫(0,∞)sinc(x)sinc(2x)sinc(4x)sinc(8x)dx=π/16

  ∫(0,∞)sinc(x)=π/2

  ∫(0,∞)sinc(x)sinc(3x)dx=π/6

  ∫(0,∞)sinc(x)sinc(3x)sinc(9x)dx=π/18

  ∫(0,∞)sinc(x)sinc(3x)sinc(9x)sinc(27x)dx=π/54

 置換積分により

  ∫(0,∞)Πsin(x*n^i)/(x*n^i)dx=1/n^k∫(0,∞)sin(x)/(x)dx

すなわち,本質的に同じ積分となる.

===================================