■正弦積分(その6)
積分∫(0,∞)Πsin(x/k)/(x/k)dx=?について,
[1]k=iの場合,第3項までだと 1+1/2+1/3<2
[2]k=2i+1の場合,第6項までだと 1+1/3+・・・+1/13<2
[3]k=3i+1の場合,第10項まで計算しても 1+1/4+・・・+1/28+1/31<2
であり,このとき,
∫(0,∞)Πsin(x/k)/(x/k)dx=π/2
となることをみてきた.
[4]k=2^iの場合
はとくに興味津々である.
1+1/2+1/4+1/8+・・・+1/2^(i-1)=2(1-1/2^i)<2
が成り立つからである.
===================================
【1】∫(0,∞)Πsin(x/k)/(x/k)dx=?
k=2^i,k=3^iの場合について,阪本ひろむ氏&Mathematicaに調べてもらった.
∫(0,∞)sinx/xdx=π/2
∫(0,∞)sincxsinc(x/2)dx=π/2
∫(0,∞)sincxsinc(x/2)sinc(x/4)dx=π/2
∫(0,∞)sincxsinc(x/2)sinc(x/4)sinc(x/8)dx=π/2
∫(0,∞)sincxsinc(x/2)sinc(x/3)・・・sinc(x/512)dx=π/2
∫(0,∞)sincxsinc(x/2)sinc(x/3)・・・sinc(x/1024)dx=π/2
ここで打ち切り.
∫(0,∞)sinx/xdx=π/2
∫(0,∞)sincxsinc(x/3)dx=π/2
∫(0,∞)sincxsinc(x/3)sinc(x/9)dx=π/2
∫(0,∞)sincxsinc(x/3)sinc(x/9)sinc(x/27)dx=π/2
∫(0,∞)sincxsinc(x/3)sinc(x/9)・・・sinc(x/3^9)dx=π/2
∫(0,∞)sincxsinc(x/3)sinc(x/9)・・・sinc(x/3^10)dx=π/2
ここで打ち切り.
===================================
【2】∫(0,∞)Πsin(kx)/(kx)dx=?
∫(0,∞)sinc(x)=π/2
∫(0,∞)sinc(x)sinc(2x)dx=π/4
∫(0,∞)sinc(x)sinc(2x)sinc(4x)dx=π/8
∫(0,∞)sinc(x)sinc(2x)sinc(4x)sinc(8x)dx=π/16
∫(0,∞)sinc(x)=π/2
∫(0,∞)sinc(x)sinc(3x)dx=π/6
∫(0,∞)sinc(x)sinc(3x)sinc(9x)dx=π/18
∫(0,∞)sinc(x)sinc(3x)sinc(9x)sinc(27x)dx=π/54
置換積分により
∫(0,∞)Πsin(x*n^i)/(x*n^i)dx=1/n^k∫(0,∞)sin(x)/(x)dx
すなわち,本質的に同じ積分となる.
===================================