■BBP公式(その10)
ヴィエタの無限積は
2/π=√2/2・√(2+√2)/2・√(2+√(2+√2))/2・√(2+√(2+√(2+√2)))/2・・・
これはオイラーが見つけた無限積の公式
sinx/x=cos(x/2)cos(x/4)cos(x/8)・・・
にx=π/2を代入することで簡単に証明できる。
===================================
それでは,任意のxに対して,無限積公式
sinx/x=cosx/2cosx/4cosx/8・・・
を示しておこう.
(証明)
sinx=2sinx/2cosx/2
=4sinx/4cosx/4cosx/2
=8sinx/8cosx/8cosx/4cosx/2
・・・・・
=2^nsinx/2^ncosx/2^n・・・cosx/2
書き直すと
sinx=x[sin(x/2^n)/(x/2^n)]cosx/2・・・cosx/2^n
ここで,n→∞のとき,
sin(x/2^n)/(x/2^n)→1
であるから,sinxの無限積表示
sinx=xΠcosx/2^n
=x(1−x^2/π^2)(1−x^2/4π^2)(1−x^2/9π^2)・・・
が得られる.この結果は,sinxがx=0,±π,±2π,±3π,・・・のとき,0になることに一致している.
===================================
[補]正弦積分とは,
Si(x)=∫(0,t)sint/tdt
=x−x^3/3・3!+x^5/5・5!−・・・
として定義される特殊関数(初等関数によって表し得ない関数)である.また,その特殊値
Si(∞)=∫(0,∞)sint/tdt=π/2
は,ディリクレ積分と呼ばれる.
===================================