■間引いたフィボナッチ数列(その12)
フィボナッチ数列
f(x)=(x)/(1-x-x^2)=(1/√5)/(1-αx)-(1/√5)/(1-βx)
α=(1+√5)/2、β=(1-√5)/2
an=1/√5・{α^n-β^n}
===================================
間引いたフィボナッチ数列{F2n+1}を求めるために
{F2n+1}=1/√5・{α^2n+1-β^2n+1}
{Fn}^2=1/5・{α^n-β^n}^2
{Fn+1}^2=1/5・{α^n+1-β^n+1}^2
{Fn}^2+{Fn+1}^2=1/5・{α^2n+β^2n-2(αβ)^n+α^2n+2+β^2n+2-2(αβ)^n+1}
==1/5・{α^2n+β^2n+α^2n+2+β^2n+2
==1/5・{α^2n+1(α+1/α)+β^2n+1(β+1/β)}
==1/5・{α^2n+1(√5)+β^2n+1(-√5)}}
=1/√5・{α^2n+1-β^2n+1}
={F2n+1}
===================================
{Fn+1}^2=1/5・{α^n+1-β^n+1}^2=1/5・{α・α^n-β・β^n}^2
=1/5・{α^2・α^2n+β^2・β^2n-2αβ・α^n-・β^n}
{Fn}^2=1/5・{α^n-β^n}^2
=1/5・{α^2n+β^2n-2・α^n・β^n}
{Fn}^2+{Fn+1}^2=1/5・{(α^2+1)α^2n+(β^2+1)β^2n-2(αβ+1)α^n・β^n}
4で割って1または2余ることを示すのには至らない
===================================
F3n=0 (mod2)
F4n=0 (mod3)
F5n=0 (mod5)
F6n=0 (mod8)
F7n=0 (mod13)
すなわち,フィボナッチ数はn個おきに,Fnの倍数になるという整除性の性質も使えそうにない.
===================================