■x^1/2に収束する分数列(その52)
√2に収束する高次分数列を考える.
p/q→(p^2+2q^2)/2pq
p/q→(p^3+6pq^2)/(3p^2q+2q^2)
p/q→(p^4+12p^2q^2+4q^4)/4pq(p^2+2q^2)
p/q→(p^5+20p^3q^2+20pq^4)/(5p^4q+20p^2q^3+4q^5)
p/q→(p^6+30p^4q^2+60p^2q^4+8q^6)/(6p^5q+40p^3q^3+24pq^5)
は驚異的なスピードで√2に近づきます.
===================================
p/q→(p^2+aq^2)/bpq
において,P=p^2+aq^2,Q=bpqとおいた場合,
P^2−2Q^2=p^4+(2a−2b^2)p^2q^2+a^2q^2=(p^2−2q^2)^2=1
連立2次方程式
(2a−2b^2)=−4
a^2=4
→a=2,b=2 (OK)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
P=(p^3+apq^2)=p(p^2+aq^2),
Q=(bp^2q+cq^3)=q(bp^2+cq^2)
P^2−2Q^2=p^2(p^4+2ap^2q^2+a^2q^4)−2q^2(b^2p^4+2bcp^2q^2+c^2q^4)
=(p^6+2ap^4q^2+a^2p^2q^4)−(2b^2p^4q^2+4bcp^2q^4+2c^2q^6)
=p^6+(2a−2b^2)p^4q^2+(a^2−4bc)−2c^2q^6
=(p^2−2q^2)^3=1
連立2次方程式
(2a−2b^2)=−6
(a^2−4bc)=12
−2c^2=−8
c=2,b=3,a=6 (OK)
===================================