■an+b型素数(その5)

 フィボナッチの等式としてよく知られている恒等式

(a^2+b^2)(c^2+d^2)=(ac−bd)^2+(ad+bc)^2

(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad−bc)^2

は簡単に確認できます.

 a=bまたはc=dのときは,積はたった1通りの方法で2つの平方数の和になります.

  10=2・5

  2=1^2+1^2,5=1^2+2^2

  10=(1・1+1・2)^2+(1・2−1・1)^2=3^2+1^2

  10=(1・1−1・2)^2+(1・2+1・1)^2=1^2+3^2

===================================

  29=2^2+5^2

  37=1^2+6^2

  1073=29・37

a=2,b=5,c=1,d=6を

(a^2+b^2)(c^2+d^2)=(ac−bd)^2+(ad+bc)^2

(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad−bc)^2

に代入すると,2通りの分解が得られる.

  1073=29・37=32^2+7^2=28^2+17^2

 それでは次の例は如何に?

===================================

 17=1^2+4^2,17=4^2+1^2

a=1,b=4,c=4,d=1を

(a^2+b^2)(c^2+d^2)=(ac−bd)^2+(ad+bc)^2

(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad−bc)^2

に代入すると

 17^2=17^2

  17^2=15^2+8^2,17^2=8^2+15^2

a=15,b=8,c=8,d=15を代入すると

 17^4=17^4

と当たり前の結果しか得られないが,じつは17^4には2通りの分解

 17^4=255^2+136^2=161^2+240^2

が知られている.

===================================