3次分数列では
b^4-6b^2-8b-3=0
(b-3)(b^3+3b^2+3b+1)=0
(b-3)(b+1)^3=0→b=3となったが,4次分数列ではどうだろうか?
===================================
P=(p^4+ap^2q^2+bq^4),Q=pq(cp^2+dq^2)
P^2=p^8+a^2p^4q^4+b^2q^8+2ap^6q^2+2abp^2q^6+2bp^4q^4
=p^8+2ap^6q^2+(a^2+2b)p^4q^4+2abp^2q^6+b^2q^8
2Q^2=2p^2q^2(c^2p^4+2cdp^2q^2+d^2q^4)
=2c^2p^6q^2+4cdp^4q^4+2d^2p^2q^6
P^2-2Q^2=p^8+(2a-2c^2)p^6q^2+(a^2+2b-4cd)p^4q^4+(2ab-2d^2)p^2q^6+b^2q^8
=(p^2-2q^2)^4=1
(2a-2c^2)=-8
(a^2+2b-4cd)=24
(2ab-2d^2)=-32
b^2=16→b=4
(2a-2c^2)=-8
(a^2-4cd)=16
(8a-2d^2)=-32
a=12,c=4,d=8 (OK)
5次分数列,6次分数列は省略.
===================================