■√2に収束する高次分数列(その6)

 3次分数列では

  b^4−6b^2−8b−3=0

  (b−3)(b^3+3b^2+3b+1)=0

  (b−3)(b+1)^3=0→b=3となったが,4次分数列ではどうだろうか?

===================================

  P=(p^4+ap^2q^2+bq^4),Q=pq(cp^2+dq^2)

P^2=p^8+a^2p^4q^4+b^2q^8+2ap^6q^2+2abp^2q^6+2bp^4q^4

=p^8+2ap^6q^2+(a^2+2b)p^4q^4+2abp^2q^6+b^2q^8

2Q^2=2p^2q^2(c^2p^4+2cdp^2q^2+d^2q^4)

=2c^2p^6q^2+4cdp^4q^4+2d^2p^2q^6

P^2−2Q^2=p^8+(2a−2c^2)p^6q^2+(a^2+2b−4cd)p^4q^4+(2ab−2d^2)p^2q^6+b^2q^8

=(p^2−2q^2)^4=1

(2a−2c^2)=−8

(a^2+2b−4cd)=24

(2ab−2d^2)=−32

b^2=16→b=4

(2a−2c^2)=−8

(a^2−4cd)=16

(8a−2d^2)=−32

a=12,c=4,d=8   (OK)

 5次分数列,6次分数列は省略.

===================================