■素数の逆数和(その67)

{(1+1/2+1/3+・・・+1/n)−logn}→γ

===================================

[1]オイラーの定数が出現する無限級数

{(1+1/3+1/5+・・・+1/(2n−1)))−1/2・logn}→γ/2+log2

一般に

{(1/((k−1)m+1)+・・・+1/((k−1)m+m−1))−(m−1)/m・logn}→(m−1)γ/m+logm

m=3のとき

{(1+1/2+1/4+1/5+1/7+1/8+1/(3n−2)+1/(3n−1)−2/3・logn}→2γ/3+log3

===================================

一般に

{(1/((k−1)m+1)+・・・+1/((k−1)m+m−1))−(m−1)/km}→logm

m=3のとき

{(1+1/2−2/3+1/4+1/5−2/6+1/7+1/8−2/9+・・・}→log3

m=5のとき

{(1+1/2+1/3+1/4−4/5+1/6+1/7+1/8+1/9−4/10+・・・}→log5

===================================

 π=exp(log2+C) 

C=1/2・ζ(2)/2+1/2^3・ζ(4)/4+1/2^5・ζ(6)/6+・・・

 π=exp(γ+C) 

C=1/2・ζ(2)/2+1/2^2・ζ(3)/3+1/2^3・ζ(4)/4+・・・

 γ=log2−1/2^2・ζ(3)/3−1/2^4・ζ(5)/5−1/2^6・ζ(7)/7−・・・ 

===================================