■ありやなしや(その37)

不定方程式x^2+5y^2−7z^2=0の(0,0,0)以外の整数解は存在するだろうか?

===================================

mod5で考える

もし整数解があればx^2=2z^2  (mod5)

となる

a=F5={0,1,2,3,4}のとき、a^2=0,1,4,4,1 (mod5)

2a^2=0,2,3,3,2

aが5で割れないとき、前者には1,4しか現れず、後者には2,3しか現れない→整数解は存在しない。

aが5で割れるとき、zも5で割れる→(0,0,0) mod5→非自明な解は存在しない

一般に、a,b,cをどの2つも互いに素な整数とするとき、

ax^2+by^2+cz^2=0 (modp)

で非自明な解をもてばmod p^nでも非自明な解をもつ。

===================================

【1】ハッセ・ミンコフスキーの局所大域原理

一般に、a,b,cを有理数とする

ax^2+by^2+cz^2=0

が非自明な有理数解をもつための必要十分条件はすべての素数mod pでの非自明な解をもつことである。

これをハッセ・ミンコフスキーの局所大域原理が成り立つという。n変数2次形式への一般化も成立する

===================================