■素数の逆数和(その41)
[1]三角数
Σ2/n(n+1)=2Σ1/n(n+1)=2Σ(1/n−1/(n+1))
=2{(1/1−1/2)+(1/2−1/3)+(1/3−1/4)+・・・}
=2
[2]四角数
Σ1/n^2=π^2/6
はいいとして,
[3]五角数
Σ2/n(3n−1)=3log3−π/√3
を求めてみたい.
===================================
Σ6/3n(3n−1)
=6Σ{1/(3n−1)−1/3n}
=6{(1/2−1/3)+(1/5−1/6)+(1/8−1/9)+・・・}
===================================
[4]六角数:
Σ1/n(2n−1)=2log2
を求めてみたい.
Σ1/n(2n−1)
=Σ2/2n(2n−1)
=2Σ{1/(2n−1)−1/2n}
=2{(1/1−1/2)+(1/3−1/4)+(1/5−1/6)+・・・}
=2log2
===================================