■素数の逆数和(その41)

[1]三角数

 Σ2/n(n+1)=2Σ1/n(n+1)=2Σ(1/n−1/(n+1))

=2{(1/1−1/2)+(1/2−1/3)+(1/3−1/4)+・・・}

=2

[2]四角数

 Σ1/n^2=π^2/6

はいいとして,

[3]五角数

 Σ2/n(3n−1)=3log3−π/√3

を求めてみたい.

===================================

 Σ6/3n(3n−1)

=6Σ{1/(3n−1)−1/3n}

=6{(1/2−1/3)+(1/5−1/6)+(1/8−1/9)+・・・}

===================================

[4]六角数:

  Σ1/n(2n−1)=2log2

を求めてみたい.

 Σ1/n(2n−1)

=Σ2/2n(2n−1)

=2Σ{1/(2n−1)−1/2n}

=2{(1/1−1/2)+(1/3−1/4)+(1/5−1/6)+・・・}

=2log2

===================================