■ガウス素数かつアイゼンシュタイン素数(その14)

整数の世界では素数であったものが、ガウス整数の世界では素数にならなくなるものがあります。

例:13=(3+2i)(3-2i)=3^2+2^2

[1]2=(1+i)(1-i)と素因数分解される

[2]素数pが4n+1型素数であるとき、p=(a+bi)(a-bi)=a^2+b^2

[3]素数pが4n+3型素数であるとき、pはガウス素数となる。

例:

2=(1+i)(1-i)

3:ガウス素数

5=(1+2i)(1-2i)

7:ガウス素数

11:ガウス素数

13=(2+3i)(2-3i)

17=(1+4i)(1-4i)

19:ガウス素数

===================================

【1】フィボナッチの等式

フィボナッチの等式としてよく知られている恒等式

(a^2+b^2)(c^2+d^2)=(ac−bd)^2+(ad+bc)^2

(a^2+b^2)(c^2+d^2)=(ac+bd)^2+(ad−bc)^2

が正しいことは簡単に確認できます.

このことは

[1]x^2+y^2型整数の積は,再びx^2+y^2型整数として表すことができること,また,

[2]この積は2通りの異なる方法で,2つの平方数の和として表すことができることを示しています.

 たとえば,5と13はいずれも4n+1型素数で,2つの平方数の和として表されますから,

  65=5・13

5=1^2+2^2,13=2^2+3^2

  65=(1・2+2・3)^2+(1・3−2・2)^2=8^2+1^2

  65=(1・2−2・3)^2+(1・3+2・2)^2=4^2+7^2

となります.

a=bまたはc=dのときは,積はたった1通りの方法で2つの平方数の和になります.

  10=2・5

  2=1^2+1^2,5=1^2+2^2

  10=(1・1+1・2)^2+(1・2−1・1)^2=3^2+1^2

  10=(1・1−1・2)^2+(1・2+1・1)^2=1^2+3^2

  1105=5・13・17

は4n+1型素数のはじめの3素数の積です.このことから,1105は2つの平方数の和で4通りに表せることになるのです.

  1105=(a^2+b^2)(c^2+d^2)(e^2+f^2)

  17=1^2+4^2

  1105=(8^2+1^2)(1^2+4^2)=4^2+33^2=12^2+31^2

  1105=(4^2+7^2)(1^2+4^2)=24^2+23^2=32^2+9^2

===================================

[1]12n+1型素数:13,37,61,73,97,103,・・・:ガウス分解かつアイゼンシュタイン分解

[2]12n+5型素数:5,17,29,41,53,89,101,113,・・・:ガウス分解かつアイゼンシュタイン惰性

[3]12n+7型素数:7,19,31,43,67,79,103,127,・・・:ガウス惰性かつアイゼンシュタイン分解

[4]12n+11型素数:11,23,47,59,71,83,107,131,・・・:ガウス惰性かつアイゼンシュタイン惰性

===================================