■ありやなしや(その29)
[1]x^2−dy^2=±1→(x^2+dy^2)^2−d(2xy)^2=1
[2]x^2−dy^2=±2→{(x^2+dy^2)/2}^2−d(xy)^2=1
[2]x^2−dy^2=4
2|x→{(x^2−2)/2}^2−d(xy/2)^2=1
not 2|x→{x(x^2−3)/2}^2−d(y(x^2−1)/2)^2=1
[4]x^2−dy^2=−4
→(x^2+2)/2{(x^2+2)^2−3}^2−d(xy/2){(x^2+2)^2−1}^2=1
===================================