■マーダヴァの無限級数(その26)

 同様に

[1] Πp^4/(p^4−1)=Π1/(1−1/p^4)

=ζ(4)=π^4/90

[2] Π(p^4+1)/(p^4−1)=7/6

ですから,

[3] Πp^4/(p^4+1)=π^4/105=ζ(8)/ζ(4)

が求められます.

===================================

[3]の(証)

  Πp^4/(p^4+1)=Πp^4(p^4−1)/(p^8−1)

 ={Πp^8/(p^8−1)}/{Πp^4/(p^4−1)}

 =ζ(8)/ζ(4)=(π^8/9450)/(π^4/90)=π^4/105

===================================