■マーダヴァの無限級数(その21)
(その19)に掲げたことから
(1−1/3^2)(1−1/5^2)(1−1/7^2)(1−1/9^2)・・・
は一見するとグレゴリー・ライプニッツ級数のオイラー積のように思えるかもしれないが,すべての素数を渡るのではなく,すべての奇数を渡っているので,オイラー積ではない.
グレゴリー・ライプニッツ級数のオイラー積は
(1+1/3)^-1・(1−1/5)^-1・(1+1/7)^-1・(1+1/11)^-1・(1−1/13)^-1・・・
ところで,
(1−1/3^2)(1−1/5^2)(1−1/7^2)(1−1/9^2)・・・=(1−1/3)(1+1/3)(1−1/5)(1+1/5)・・・
から
(1+1/3)^-1・(1−1/5)^-1・(1+1/7)^-1・(1+1/11)^-1・(1−1/13)^-1・・・
へと直接書き直すことはできないだろうか? 挑戦されたい.
===================================