■パスカルの三角形(その6)

 パスカルの三角形におけるダビデの星定理を紹介したい.たとえ(5,2)=10を囲む6つの数5,4,6,10,20,15をひとつ置きにかけると

  5・6・20=4・10・15=600

 これは一般的に成り立ち,

  (n−1,r−1)(n,r+1)(n+1,r)=(n−1,r)(n,r−1)(n+1,r+1)

 しかがって,パスカルの三角形で,ひとつの数を取り囲む6つの数の積は平方数になる.

  (n−1,r−1)(n,r+1)(n+1,r)(n−1,r)(n,r−1)(n+1,r+1)=N^2

 たとえば,

(3,1)を取り囲む6つの数の積は1・2・3・6・4・1=144.

(4,1)を取り囲む6つの数の積は3・1・1・5・10・6=900.

===================================