■ガウス楕円とシュタイナー楕円(その4)
【3】ファンデンバーグ・ジーベックの定理
「ガウスの定理」より
『複素数係数の3次方程式f(z)=0の複素数解をα1,α2,α3,2次方程式f’(z)=0の解をβ1,β2とする.このとき,線分β1β2は三角形α1α2α3に含まれる.1次方程式f”(z)=0の解をγとするとき,線分β1β2の中点が点γとなる.』ですが,もっと面白い現象
『2点β1,β2は三角形α1α2α3の3辺の中点でこれらの辺に接する楕円の焦点になる.』
に到達することができます.
(証)γ=(α1+α2+α3)/3=(β1+β2)/2
また,3辺の中点は
μ1=(α2+α3)/2,μ2=(α3+α1)/2,μ3=(α1+α2)/2
このとき,中線定理を使うと
|μ1−β1|+|μ1−β2|=|μ2−β1|+|μ2−β2|=|μ3−β1|+|μ3−β2|
が成り立つ.
[系]与えられた三角形に内接する面積が最大となるシュタイナー楕円は,接点が各辺の中点となるものである.その面積比は
π/3√3
で円とそれに外接する正三角形の面積比に等しい.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[補]三角形についてのパップスの中点定理
△ABCにおいて,辺BC上に中点Mが与えられている.このとき,
AB^2+AC^2=2(AM^2+BM^2)
が成り立つ.
3辺の長さをa,b,c,AM=xで表すと,
2(x^2+(a/2)^2)=b^2+c^2
===================================