■ワイソフ座標と重心座標(その7)

[系]与えられた三角形に内接する面積が最大となるシュタイナー楕円は,接点が各辺の中点となるものである.その面積比は

  π/3√3=0.6045997・・・

で円とそれに外接する正三角形の面積比に等しい.

  [参]一松信・畔柳和生「重心座標による幾何学」現代数学社

にはガウス楕円とシュタイナー楕円の関係も収載されている.ただし,用語に混乱があり,同書では上述したシュタイナー楕円をガウス楕円,与えられた三角形に外接する楕円をシュタイナー楕円と呼んでいる.すなわち,

 ガウス楕円:三角形の各辺の中点を通り,そこで辺に接する楕円.(シュタイナーの内接楕円と呼ばれることもある)

 シュタイナー楕円:外接楕円中面積が最小のもの.スタイナーの内接楕円を2倍に拡大した相似楕円である.

===================================

 以上の結果を合わせると

  三角形の外接円の面積≧シュタイナー楕円の面積=4×ガウス楕円の面積≧4×内接円の面積

[系]三角形の外接円の面積は内接円の面積の4倍以上である.等号が正三角形に限る.

[系]R≧2r

===================================