■大円弧多面体(その219)

n角形2枚と2角形n枚よりなるn+2面体を考える。

2角形の内角をθとすると面積は2θ

になる。

===================================

n角形の内角をAとする。

とりあえずn=5とするが、5角形の面積はS=5A−3π

2枚で10A−6π 

 

2角形の内角はπ-Aであるから、面積は2π-2A

5枚で10π-10A

これではどのようなnでもどのようなAでも製作可能になるわけであるが、そのような構造は可能なのだろうか?

===================================

n角形の面積はS=nA−(n-2)π

2枚で2nA−2(n-2)π 

 

2角形の内角はπ-Aであるから、面積は2π-2A

n枚で2nππ-2nA

面積の合計は4πとなる。

===================================

試作してみると、ねじれて折れてしまった。

上のn角形に外接する円を(cos(2πi/n),sin(2πi/n),h)

下のn角形に外接する円を(cos(2πi/n+πi/n),sin(2πi/n+πi/n),-h)

外接球をx^2+y^2+z^2=r^2とおくと

1+h^2=r^2

外接球をx^2+y^2+z^2=1+h^2

(1,0,h)

(cos(2π/n),sin(2π/n),h)

(-cos(2π/n),sin(2π/n),-h)

(-1,0,-h)

これらの4点がすべて平面

z=h・x

にあるようにはできなかった。

===================================