■パンデジタル平方数(その48)

n番目の素数をpnで表すと、

p1=2,p2=3,p3=5,p4=7,p5=11,p6=13,p7=17,p8=19,p9=23,p10=29,・・・

Π(p+1)/(p-1)を考える。

3/1=3  (整数)

3/1・4/2=6  (整数)

3/1・4/2・6/4=9  (整数)

3/1・4/2・6/4・8/6=12  (整数)

3/1・4/2・6/4・8/6・12/10=72/5

3/1・4/2・6/4・8/6・12/10・14/12=84/5

3/1・4/2・6/4・8/6・12/10・14/12・18/16=189/10

3/1・4/2・6/4・8/6・12/10・14/12・18/16・20/18=21  (整数)

3/1・4/2・6/4・8/6・12/10・14/12・18/16・20/18・24/22=252/11

3/1・4/2・6/4・8/6・12/10・14/12・18/16・20/18・24/22・30/28=1890/77

m=8のとき、整数になる。整数となることが知られている最大の整数である

===================================

pをnと2nの間にある素数とすると

Π(p+1)/(p-1)→∞を証明することができる

===================================

n番目の素数をpnで表すとp<pn

Π(p+1)/(p-1)>Π(pn+1)/(pn-1)

===================================