■パンデジタル平方数(その33)
Π(p^2+1)/(p^2−1)=5/2
Π((n^3−1)/(n^3+1)=2/3 n=2〜∞
それでは
Π((n^2−1)/(n^2+1)=?
===================================
[1]N=Πn^k/(n^k−1) n=2〜∞
k=2:N=2
k=3:N=3πsech(π√3/2)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[2]N=Π(n^k+1)/n^k n=1〜∞
k=2:N=sinh(π)/π
k=3:N=cosh(π√3/2)/π
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
[3]N=Π(n^k+1)/n^k n=2〜∞
k=2:N=sinh(π)/2π
k=3:N=cosh(π√3/2)/2π
したがって,n=2〜∞
Π((n^2+1)/(n^2−1)=sinh(π)/π
Π((n^2−1)/(n^2+1)=π/(sinh(π))
なお,
Π((n^3+1)/(n^3−1)=cosh(π√3/2)/2π・3πsech(π√3/2)=3/2
Π((n^3−1)/(n^3+1)=2/3
===================================
Π((n^2+1)/(n^2−1)=sinh(π)/π〜3.67607
2.5=Π(p^2+1)/(p^2-1)<Π(p+1)/(p-1)→?
===================================
Π((n+1)/(n−1)=2/1・3/2・4/3・・・n/(n-1)・(n+1)/n=n(n+1)/2→∞
したがって、
Π(p+1)/(p-1)→∞と思われるが、直接的に証明するにはどうすればよいのだろうか?
===================================