■結び目の体積(その25)

【3】kissing numberの上界と下界

 

 n次元ユークリッド空間において,1つの単位球に同時に接触することのできる単位球の最大個数τnは,接吻数(kissing number)あるいは接触数(contact number)と呼ばれていて,最密充填構造「同じ半径の球をできるだけ稠密詰めるにはどうしたらよいか」という空間の球による充填問題と深い関連があります.

  τ1=2,τ2=6,τ3=12

 

 また,4次元以上の高次元では,8次元(240個)と24次元(196560個)の場合を除いて未解決です.

  τ8=240,τ24=196560

 

 n次元球のkissing numberの上界は,コクセターの方法によって粗雑ながら押さえられます.それは1球面上に大きさの等しい球帽(球面上の円,球面半径φ)を埋め込むときの最密充填の問題に帰着されるのですが,(その4)で解説した単体的密度限界

  dn=(2n/(n+1))^(-n/2)Dn

    =(n+1)^(1/2)(n!)^2/2^(3n/2)・vnFn(1/2arcsec(n)θ)

と類似の方法になっています.

 

 n次元正単体(二面角2θ)の頂点を超球の中心において,(n−1)次元球面上に射影します.球面上には(n−1)次元球面正三角形ができ,その面積は

  Σ=2^(-n)n!snFn(θ)

で与えられます.これは正単体の1辺の球面距離2φの関数になります.

 

 また,σを球面正三角形の頂角の和とすると,球面上にはn個の点が配置され,(n−2)次元球帽が(n−1)次元球面を覆うことになります.そして,1つの頂角は(n−1)次元正単体を(n−2)次元球面上に射影したものに等しくなりますから

  σ=n2^(-n+1)(n−1)!Fn-1(θ)

 

 すなわち,上界は

  (p,3,・・・,3),θ=π/p

なる三角形面正多面体(単体的正多面体:n−1次元面が単体)の頂点に(n−2)次元球を配置する問題となるのですが,ここで,球面上にN(φ)個の点を配置した場合,不等式

  N(φ)≦σsn/Σ

が成り立ちますから,最終的に

  N(φ)≦2Fn-1(θ)/Fn(θ)

  sec2θ=sec2φ+n−2

を得ることができます.

 

 kissing number(τn)に関しては,φ=π/6の場合を考えればよいので,  τn≦2Fn-1(1/2arcsecn)/Fn(1/2arcsecn)

となり,

  n=2 → 2F1(π/6)/F2(π/6)=6

  n=3 → 2F2(1/2arcsecn3)/F3(1/2arcsecn3)=6/(3-π/arcsec3)=13.39・・・

  n=4 → 2F3(1/2arcsecn4)/F4(1/2arcsecn4)=5(1+1/(2-2π/arcsec4))=26.44・・・

 

 5次元以上では,数値積分によらなければなりませんが,

  fn(x)=Fn(1/2arcsecx)

と書くことにすると,

  f2(x)=arcsecx/x

  fn(x)=1/π∫(n-1,x)fn-2(x-2)/x√(x^2-1)dx

     =fn(n)+1/π∫(n,x)fn-2(x-2)/x√(x^2-1)dx

  fn(x)=fn-1(x)-1/3fn-3(x)+2/15fn-5(x)-17/315fn-7(x)+62/2835fn-9(x)-・・・(n:odd)

  fn(x)=1/3fn-2(x)-2/15fn-4(x)+17/315fn-6(x)-62/2835fn-8(x)+・・・(n:even)

 

 リーチは台形則を用いて数値積分し,

  2fn-1(n)/fn(n)

を求めました.その結果は

  2f3(4)/f4(4)=22.44・・・

  2f4(5)/f5(5)=48.70・・・

  2f5(6)/f6(6)=85.81・・・

  2f6(7)/f7(7)=146.57・・・

  2f7(8)/f8(8)=244.62・・・

以下,(9)401,(10)648,(11)1035,(12)1637,・・・と続きます.

 

===================================