‘KEXΜy^Oi»ΜPPj
a=Ρ^4=3Ρ{Q
b=4Ρ^-4|12Ρ{20
c=Ρ^2Ρ{P
d=3
e=γ5Ρ^-3-4Ρ{V
a=(tanΏ)^2=Ρ^2
b=(tanΐ)^2=4Ρ^-4
c=(tanΑ)^2=Ρ^4
d=(tanΒ)^2=γ5Ρ^-3
e=(tanΓ)^2=3
1+a=cd,1+b=de,1+c=ea,1+d=ab,1+e=bc
(cosΏ)^2=1/cd
(cosΐ)^2=1/de
(cosΑ)^2=1/ea
(cosΒ)^2=1/ab
(cosΓ)^2)=1/bc
(cosΏ)^2=Ρ^-2/3
(cosΐ)^2=Ρ^3/3γ5
(cosΑ)^2=Ρ^-1/γ5
(cosΒ)^2=1/4
(cosΓ)^2)=Ρ^2/4
(tanΏ)^2(cosΑ)^2=Ρ/γ5
(tanΏ)^2(cosΒ)^2=Ρ^2/4
(tanΐ)^2(cosΒ)^2=Ρ^-4
(tanΐ)^2(cosΓ)^2=Ρ^-2
(tanΑ)^2(cosΓ)^2=Ρ^6/4
(tanΑ)^2(cosΏ)^2=Ρ^2/3
(tanΒ)^2(cosΏ)^2=γ5/3Ρ^-5
(tanΒ)^2(cosΐ)^2=1/3
(tanΓ)^2(cosΐ)^2=Ρ^3/γ5
(tanΓ)^2(cosΑ)^2=3Ρ^-1/γ5
@@Σ^-4|RΣ{TA γTΣ^-4VΣ|PP
@@Σ^-3QΣ|RA γTΣ^-3-SΣ{V
@@Σ^-2|Σ{QA γTΣ^-2RΣ|S
@@Σ^-1Σ|PA γTΣ^-1|Σ{R
@@Σ^0PA γTΣ^0QΣ|P
@@Σ^1ΣA γTΣ^1Σ{Q
@@Σ^2Σ{PA γTΣ^2RΣ{P
@@Σ^3QΣ{PA γTΣ^3SΣ{R
@@Σ^4RΣ{QA γTΣ^4VΣ{S
@@Σ^5TΣ{RA γTΣ^511Σ{V
@@Σ^6WΣ{TA γTΣ^618Σ{11
@EΣΣ{ΜWCΝtB{ib`ρπΘ·D