‘ƒKƒEƒX‚Μƒyƒ“ƒ^ƒOƒ‰ƒ€i‚»‚Μ‚P‚Pj

a=ƒΡ^4=3ƒΡ{‚Q

b=4ƒΡ^-4|12ƒΡ{20

c=ƒΡ^2ƒΡ{‚P

d=3

e=γ5ƒΡ^-3-4ƒΡ{‚V



a=(tanƒΏ)^2=ƒΡ^2

b=(tanƒΐ)^2=4ƒΡ^-4

c=(tanƒΑ)^2=ƒΡ^4

d=(tanƒΒ)^2=γ5ƒΡ^-3

e=(tanƒΓ)^2=3

1+a=cd,1+b=de,1+c=ea,1+d=ab,1+e=bc

(cosƒΏ)^2=1/cd

(cosƒΐ)^2=1/de

(cosƒΑ)^2=1/ea

(cosƒΒ)^2=1/ab

(cosƒΓ)^2)=1/bc



(cosƒΏ)^2=ƒΡ^-2/3

(cosƒΐ)^2=ƒΡ^3/3γ5

(cosƒΑ)^2=ƒΡ^-1/γ5

(cosƒΒ)^2=1/4

(cosƒΓ)^2)=ƒΡ^2/4



(tanƒΏ)^2(cosƒΑ)^2=ƒΡ/γ5

(tanƒΏ)^2(cosƒΒ)^2=ƒΡ^2/4

(tanƒΐ)^2(cosƒΒ)^2=ƒΡ^-4

(tanƒΐ)^2(cosƒΓ)^2=ƒΡ^-2

(tanƒΑ)^2(cosƒΓ)^2=ƒΡ^6/4

(tanƒΑ)^2(cosƒΏ)^2=ƒΡ^2/3

(tanƒΒ)^2(cosƒΏ)^2=γ5/3ƒΡ^-5

(tanƒΒ)^2(cosƒΐ)^2=1/3

(tanƒΓ)^2(cosƒΐ)^2=ƒΡ^3/γ5

(tanƒΓ)^2(cosƒΑ)^2=3ƒΡ^-1/γ5



@@ƒΣ^-4|‚RƒΣ{‚TA γ‚TƒΣ^-4‚VƒΣ|‚P‚P

@@ƒΣ^-3‚QƒΣ|‚RA γ‚TƒΣ^-3-‚SƒΣ{‚V

@@ƒΣ^-2|ƒΣ{‚QA γ‚TƒΣ^-2‚RƒΣ|‚S

@@ƒΣ^-1ƒΣ|‚PA γ‚TƒΣ^-1|ƒΣ{‚R

@@ƒΣ^0‚PA γ‚TƒΣ^0‚QƒΣ|‚P

@@ƒΣ^1ƒΣA γ‚TƒΣ^1ƒΣ{‚Q

@@ƒΣ^2ƒΣ{‚PA γ‚TƒΣ^2‚RƒΣ{‚P

@@ƒΣ^3‚QƒΣ{‚PA γ‚TƒΣ^3‚SƒΣ{‚R

@@ƒΣ^4‚RƒΣ{‚QA γ‚TƒΣ^4‚VƒΣ{‚S

@@ƒΣ^5‚TƒΣ{‚RA γ‚TƒΣ^511ƒΣ{‚V

@@ƒΣ^6‚WƒΣ{‚TA γ‚TƒΣ^618ƒΣ{11

@‰E•Σ‚ƒΣ{‚Ž‚ΜŒW”‚C‚Ž‚ΝƒtƒBƒ{ƒiƒbƒ`”—ρ‚π‚Θ‚·D

