■シュレーフリの公式と直角三角錐(その172)

結局、シュレーフリ記号と2面角から3行目を決めて(2,0)=2とすればよい

ユークリッド空間の基本単体では

(sinα)^2(sinγ)^2-(cosβ)^2=0

sinαsinγ-cosβ=0

(tanα)^2(tanγ)^2-(cosβ)^2/(cosα)^2(cosγ)^2=0

 が導き出せればよい

4次元の場合はどれくらい複雑になるのだろうか?

===================================

(0,2)(1,3)=(secβ)^2

(1,3)(2,4)=(secγ)^2

(1,3)=(secβ)(secγ)

(0,2)=(secβ)(cosγ)

(2,4)=(secγ)(cosβ)

(-1,1)(0,2)=(secα)^2

(2,4)(3,5)=(secδ)^2

(-1,1)=(secα)^2cosβsecγ

(3,5)=(secδ)^2secβcosγ

(-1,2)=(tanα)^2

(0,3)=(tanβ)^2

(1,4)=(tanγ)^2

(2,5)=(tanδ)^2

(tanα)^2(tanβ)^2-(secβ)(cosγ)(-1,3)=1

(-1,3)={(tanα)^2(tanβ)^2-1}/(secβ)(cosγ)

={(sinα)^2(sinβ)^2-(cosα)^2(cosβ)^2}/(cosα)^2cosβcosγ

(tanβ)^2(tanγ)^2-(secβ)(secγ)(0,4)=1

(0,4)={(tanβ)^2(tanγ)^2-1}/(secβ)(secγ)

={(sinβ)^2(sinγ)^2-(cosβ)^2(cosγ)^2}/cosβcosγ

(tanγ)^2(tanδ)^2-(secγ)(cosβ)(1,5)=1

(1,5)={(tanγ)^2(tanδ)^2-1}/(secγ)(cosβ)

={(sinγ)^2(sinδ)^2-(cosγ)^2(cosδ)^2}/(cosδ)^2cosβcosγ

(-1,3)(0,4)-(tanβ)^2(-1,4)=1

{(sinα)^2(sinβ)^2-(cosα)^2(cosβ)^2}{(sinβ)^2(sinγ)^2-(cosβ)^2(cosγ)^2}/(cosα)^2(cosβ)^2(cosγ)^2-(tanβ)^2(-1,4)=1

(0,4)(1,5)-(tanγ)^2(0,5)=1

{(sinγ)^2(sinδ)^2-(cosγ)^2(cosδ)^2}{(sinβ)^2(sinγ)^2-(cosβ)^2(cosγ)^2}/(cosδ)^2(cosβ)^2(cosγ)^2-(tanγ)^2(0,5)=1

(-1,4)(0,5)=1

===================================

(-1,4)(0,5)-(0,4)(-1,5)=1

(-1,5)=[(-1,4)(0,5)-1}/(0,4)

(-1,4)={{(sinα)^2(sinβ)^2-(cosα)^2(cosβ)^2}{(sinβ)^2(sinγ)^2-(cosβ)^2(cosγ)^2}/(cosα)^2(cosβ)^2(cosγ)^2-1}/(tanβ)^2

={{(tanα)^2(tanβ)^2-1}{(tanβ)^2(tanγ)^2-1}(cosβ)^2-1}/(tanβ)^2

=(cosβ)^2{{(tanα)^2(tanβ)^2(tanγ)^2-(tanα)^2-(tanγ)^2 -1}

(0,5)={{(sinγ)^2(sinδ)^2-(cosγ)^2(cosδ)^2}{(sinβ)^2(sinγ)^2-(cosβ)^2(cosγ)^2}/(cosδ)^2(cosβ)^2(cosγ)^2-1}/(tanγ)^2

={{(tanβ)^2(tanγ)^2-1}{(tanγ)^2(tanδ)^2-1}(cosγ)^2-1}/(tanγ)^2

=(cosγ)^2{{(tanδ)^2(tanβ)^2(tanγ)^2-(tanδ)^2-(tanβ)^2 -1}

(-1,4)(0,5)=1

{{(tanα)^2(tanβ)^2(tanγ)^2-(tanα)^2-(tanγ)^2 -1}{{(tanδ)^2(tanβ)^2(tanγ)^2-(tanδ)^2-(tanβ)^2 -1}=(secβ)^2(secγ)^2

===================================

正24胞体では

cosδ= -1/2→1/4,3

1   1   1   1   1   1

  2   2   1   4   1

    3   1   3   3

      1   2   2

        1   1

          0

{{(tanα)^2(tanβ)^2(tanγ)^2-(tanα)^2-(tanγ)^2 -1}{{(tanδ)^2(tanβ)^2(tanγ)^2-(tanδ)^2-(tanβ)^2 -1}=(secβ)^2(secγ)^2

(9-7)(9-5)=(secβ)^2(secγ)^2=8・・・OK

===================================

正120胞体では

cosδ= -(1+√5)/4→(3-√5)/8,5+2√5=4τ+3=√5τ^3

1   1   1   1   1   1

  2τ^-2  2  2   2   2τ^2

    √5τ^-3 3  3   √5τ^3

      2τ^-4 4   2τ^4

        τ^-6 τ^6 

          0

{{(tanα)^2(tanβ)^2(tanγ)^2-(tanα)^2-(tanγ)^2 -1}{{(tanδ)^2(tanβ)^2(tanγ)^2-(tanδ)^2-(tanβ)^2 -1}=(secβ)^2(secγ)^2

(8√5τ^-3-4)(8√5τ^3-4)=(secβ)^2(secγ)^2=16・・・OK

320-32(-4τ+7+4τ+3)+16=16

===================================

正600面体では

cosδ= -(1+3√5)/8→(7-3√5)/16,27+12√5=3τ^6

1   1   1   1   1   1

  2   2   2  2τ^-2  4τ^6

    3   3  √5τ^-3 3τ^6

      4   2τ^-4  2τ^6

        τ^-6  τ^6

           0

{{(tanα)^2(tanβ)^2(tanγ)^2-(tanα)^2-(tanγ)^2 -1}{{(tanδ)^2(tanβ)^2(tanγ)^2-(tanδ)^2-(tanβ)^2 -1}=(secβ)^2(secγ)^2

(8√5τ^-3-4)(9√5τ^3-3τ^6-4)=(secβ)^2(secγ)^2=16τ^-2・・・OK

(-32τ+56-4)(36τ+27-24τ-15-4)

(-32τ+52)(12τ+8)

=-384τ^2+368τ+416

=-16τ+32=16τ^-2・・・OK

===================================

  φ^-4=−3φ+5、 √5φ^-4=7φ−11

  φ^-3=2φ−3、 √5φ^-3=-4φ+7

  φ^-2=−φ+2、 √5φ^-2=3φ−4

  φ^-1=φ−1、 √5φ^-1=−φ+3

  φ^0=1、 √5φ^0=2φ−1

  φ^1=φ、 √5φ^1=φ+2

  φ^2=φ+1、 √5φ^2=3φ+1

  φ^3=2φ+1、 √5φ^3=4φ+3

  φ^4=3φ+2、 √5φ^4=7φ+4

  φ^5=5φ+3、 √5φ^5=11φ+7

  φ^6=8φ+5、 √5φ^6=18φ+11

 右辺mφ+nの係数m,nはフィボナッチ数列をなす.

===================================