■シュレーフリの公式と直角三角錐(その172)
結局、シュレーフリ記号と2面角から3行目を決めて(2,0)=2とすればよい
ユークリッド空間の基本単体では
(sinα)^2(sinγ)^2-(cosβ)^2=0
sinαsinγ-cosβ=0
(tanα)^2(tanγ)^2-(cosβ)^2/(cosα)^2(cosγ)^2=0
が導き出せればよい
4次元の場合はどれくらい複雑になるのだろうか?
===================================
(0,2)(1,3)=(secβ)^2
(1,3)(2,4)=(secγ)^2
(1,3)=(secβ)(secγ)
(0,2)=(secβ)(cosγ)
(2,4)=(secγ)(cosβ)
(-1,1)(0,2)=(secα)^2
(2,4)(3,5)=(secδ)^2
(-1,1)=(secα)^2cosβsecγ
(3,5)=(secδ)^2secβcosγ
(-1,2)=(tanα)^2
(0,3)=(tanβ)^2
(1,4)=(tanγ)^2
(2,5)=(tanδ)^2
(tanα)^2(tanβ)^2-(secβ)(cosγ)(-1,3)=1
(-1,3)={(tanα)^2(tanβ)^2-1}/(secβ)(cosγ)
={(sinα)^2(sinβ)^2-(cosα)^2(cosβ)^2}/(cosα)^2cosβcosγ
(tanβ)^2(tanγ)^2-(secβ)(secγ)(0,4)=1
(0,4)={(tanβ)^2(tanγ)^2-1}/(secβ)(secγ)
={(sinβ)^2(sinγ)^2-(cosβ)^2(cosγ)^2}/cosβcosγ
(tanγ)^2(tanδ)^2-(secγ)(cosβ)(1,5)=1
(1,5)={(tanγ)^2(tanδ)^2-1}/(secγ)(cosβ)
={(sinγ)^2(sinδ)^2-(cosγ)^2(cosδ)^2}/(cosδ)^2cosβcosγ
(-1,3)(0,4)-(tanβ)^2(-1,4)=1
{(sinα)^2(sinβ)^2-(cosα)^2(cosβ)^2}{(sinβ)^2(sinγ)^2-(cosβ)^2(cosγ)^2}/(cosα)^2(cosβ)^2(cosγ)^2-(tanβ)^2(-1,4)=1
(0,4)(1,5)-(tanγ)^2(0,5)=1
{(sinγ)^2(sinδ)^2-(cosγ)^2(cosδ)^2}{(sinβ)^2(sinγ)^2-(cosβ)^2(cosγ)^2}/(cosδ)^2(cosβ)^2(cosγ)^2-(tanγ)^2(0,5)=1
(-1,4)(0,5)=1
===================================
(-1,4)(0,5)-(0,4)(-1,5)=1
(-1,5)=[(-1,4)(0,5)-1}/(0,4)
(-1,4)={{(sinα)^2(sinβ)^2-(cosα)^2(cosβ)^2}{(sinβ)^2(sinγ)^2-(cosβ)^2(cosγ)^2}/(cosα)^2(cosβ)^2(cosγ)^2-1}/(tanβ)^2
={{(tanα)^2(tanβ)^2-1}{(tanβ)^2(tanγ)^2-1}(cosβ)^2-1}/(tanβ)^2
=(cosβ)^2{{(tanα)^2(tanβ)^2(tanγ)^2-(tanα)^2-(tanγ)^2 -1}
(0,5)={{(sinγ)^2(sinδ)^2-(cosγ)^2(cosδ)^2}{(sinβ)^2(sinγ)^2-(cosβ)^2(cosγ)^2}/(cosδ)^2(cosβ)^2(cosγ)^2-1}/(tanγ)^2
={{(tanβ)^2(tanγ)^2-1}{(tanγ)^2(tanδ)^2-1}(cosγ)^2-1}/(tanγ)^2
=(cosγ)^2{{(tanδ)^2(tanβ)^2(tanγ)^2-(tanδ)^2-(tanβ)^2 -1}
(-1,4)(0,5)=1
{{(tanα)^2(tanβ)^2(tanγ)^2-(tanα)^2-(tanγ)^2 -1}{{(tanδ)^2(tanβ)^2(tanγ)^2-(tanδ)^2-(tanβ)^2 -1}=(secβ)^2(secγ)^2
===================================
正24胞体では
cosδ= -1/2→1/4,3
1 1 1 1 1 1
2 2 1 4 1
3 1 3 3
1 2 2
1 1
0
{{(tanα)^2(tanβ)^2(tanγ)^2-(tanα)^2-(tanγ)^2 -1}{{(tanδ)^2(tanβ)^2(tanγ)^2-(tanδ)^2-(tanβ)^2 -1}=(secβ)^2(secγ)^2
(9-7)(9-5)=(secβ)^2(secγ)^2=8・・・OK
===================================
正120胞体では
cosδ= -(1+√5)/4→(3-√5)/8,5+2√5=4τ+3=√5τ^3
1 1 1 1 1 1
2τ^-2 2 2 2 2τ^2
√5τ^-3 3 3 √5τ^3
2τ^-4 4 2τ^4
τ^-6 τ^6
0
{{(tanα)^2(tanβ)^2(tanγ)^2-(tanα)^2-(tanγ)^2 -1}{{(tanδ)^2(tanβ)^2(tanγ)^2-(tanδ)^2-(tanβ)^2 -1}=(secβ)^2(secγ)^2
(8√5τ^-3-4)(8√5τ^3-4)=(secβ)^2(secγ)^2=16・・・OK
320-32(-4τ+7+4τ+3)+16=16
===================================
正600面体では
cosδ= -(1+3√5)/8→(7-3√5)/16,27+12√5=3τ^6
1 1 1 1 1 1
2 2 2 2τ^-2 4τ^6
3 3 √5τ^-3 3τ^6
4 2τ^-4 2τ^6
τ^-6 τ^6
0
{{(tanα)^2(tanβ)^2(tanγ)^2-(tanα)^2-(tanγ)^2 -1}{{(tanδ)^2(tanβ)^2(tanγ)^2-(tanδ)^2-(tanβ)^2 -1}=(secβ)^2(secγ)^2
(8√5τ^-3-4)(9√5τ^3-3τ^6-4)=(secβ)^2(secγ)^2=16τ^-2・・・OK
(-32τ+56-4)(36τ+27-24τ-15-4)
(-32τ+52)(12τ+8)
=-384τ^2+368τ+416
=-16τ+32=16τ^-2・・・OK
===================================
φ^-4=−3φ+5、 √5φ^-4=7φ−11
φ^-3=2φ−3、 √5φ^-3=-4φ+7
φ^-2=−φ+2、 √5φ^-2=3φ−4
φ^-1=φ−1、 √5φ^-1=−φ+3
φ^0=1、 √5φ^0=2φ−1
φ^1=φ、 √5φ^1=φ+2
φ^2=φ+1、 √5φ^2=3φ+1
φ^3=2φ+1、 √5φ^3=4φ+3
φ^4=3φ+2、 √5φ^4=7φ+4
φ^5=5φ+3、 √5φ^5=11φ+7
φ^6=8φ+5、 √5φ^6=18φ+11
右辺mφ+nの係数m,nはフィボナッチ数列をなす.
===================================