■シュレーフリの公式と直角三角錐(その134)
シュレーフリの公式は,四面体の各面の面積をA,二面角のコサインをcとすると,
A1=c12A2+c13A3+c14A4
A2=c21A1+c23A3+c24A4
A3=c31A1+c32A2+c34A4
A4=c41A1+c42A2+c43A3
なのであるが,これがシュレーフリの公式の各行となる.
| 1,-c12,-c13,-c14|
| -c21,1,-c23,-c24|=0
| -c31,-c32,1,-c34|
| -c41,-c42,-c43,1|
===================================
したがって、基本単体を考えるならば、
| 1,-cosα,0,0|
| -cosα,1,-cosβ,0|
| 0,-cosβ,1,-cosγ|
| 0,0,-cosγ,1|
=(cosα)^2(cosγ)^2-(cosα)^2-(cosβ)^2-(cosγ)^2+1
=(sinα)^2(sinγ)^2-(cosβ)^2
===================================
ユークリッド空間の基本単体では
(sinα)^2(sinγ)^2-(cosβ)^2=0
sinαsinγ-cosβ=0
正四面体ではα=π/3,β=π/3→√3sinγ=1
正八面体ではα=π/3,β=π/4→√3sinγ= √2
正20面体ではα=π/3,β=π/5→√3sinγ=2φ→φの間違い
===================================