‘GQEvOΖΟ·Qi»ΜQRj
Όp
(cosΖ/2)^2=(1+cosΖ)/2
(tanΖ/2)^2=(1-cosΖ)/(1+cosΖ)
ρΚpΝωm
3³
cosΒ= 1/3¨2/3,1/2
cosΒ= 0¨1/2,1
cosΒ= -1/3¨1/3,2
cosΒ= -γ5/5¨(5-γ5)/10,(3+γ5)/2
cosΒ= -γ5/3¨(3-γ5)/6,(7-3γ5)/2
4³
cosΒ= 1/4¨5/8,3/5
cosΒ= 0¨1/2,1
cosΒ= -1/2¨1/4,3
cosΒ= -1/2¨1/4,3
cosΒ= -(1+γ5)/4¨(3-γ5)/8,5+2γ5
cosΒ= -(1+3γ5)/8¨(7-3γ5)/16,27+12γ5
³
cosΒ= 1/n¨(n+1)/2n,(n-1)/(n+1)
cosΒ=0¨1/2,1
cosΒ= -(n-2)/n¨1/n,n-1