■正多角形の作図法則(その68)
単位円に内接/外接するする正6,12,24,48,96,192角形の面積を求めよ。
===================================
nsin(π/n)≦π≦ntan(π/n)
sin15°=(√6−√2)/4
tan15°=1/(2+√3)=2−√3
===================================
sinπ/12=2sinπ/24cosπ/24
x=sinπ/24
2x√(1-x^2)=(√6−√2)/4
4x^2(1-x^2)=(8-2√12)/16
4x^4-4x^2+(8-2√12)/16=0
x^2={2-{4-4(8-2√12)/16}^1/2}/4
x^2={2-{4-(8-2√12)/4}^1/2}/4
x^2={2-{(16-8+2√12)/4}^1/2}/4
x^2={2-{(8+4√3)/4}^1/2}/4
x^2={2-{(4+2√3)/2}^1/2}/4
x^2={2-{(1+√3)^2/2}^1/2}/4
x^2={2-{(1+√3)^2/2}^1/2}/4
x^2={2-{(1+√3)/√2}}/4
===================================
x=sinπ/48
4x^4-4x^2+{2-{(1+√3)/√2}}/4=0
・・・・・・・・・・・・・・・・
かなりの根気を要する
===================================