■正多角形の作図法則(その68)

単位円に内接/外接するする正6,12,24,48,96,192角形の面積を求めよ。

===================================

  nsin(π/n)≦π≦ntan(π/n)

  sin15°=(√6−√2)/4

  tan15°=1/(2+√3)=2−√3

===================================

sinπ/12=2sinπ/24cosπ/24

x=sinπ/24

2x√(1-x^2)=(√6−√2)/4

4x^2(1-x^2)=(8-2√12)/16

4x^4-4x^2+(8-2√12)/16=0

x^2={2-{4-4(8-2√12)/16}^1/2}/4

x^2={2-{4-(8-2√12)/4}^1/2}/4

x^2={2-{(16-8+2√12)/4}^1/2}/4

x^2={2-{(8+4√3)/4}^1/2}/4

x^2={2-{(4+2√3)/2}^1/2}/4

x^2={2-{(1+√3)^2/2}^1/2}/4

x^2={2-{(1+√3)^2/2}^1/2}/4

x^2={2-{(1+√3)/√2}}/4

===================================

x=sinπ/48

4x^4-4x^2+{2-{(1+√3)/√2}}/4=0

・・・・・・・・・・・・・・・・

かなりの根気を要する

===================================