■相貫体(その3)
相貫体の外側にできる菱形多面体
===================================
ケプラーは,すべての面が合同な菱形である菱形多面体は,菱形十二面体と対角線の比が黄金比になっている菱形を30個組み合わせてできる菱形三十面体以外にはないことを証明しようとしたのですが,実はあと2つ,1885年,フェドロフが発見した菱形二十面体と1960年にビリンスキーが発見した菱形十二面体第2種があります.
なお,菱形平行6面体(菱面体)には2種類(太った菱面体とやせた菱面体)あって,各面の菱形の対角線の長さの比が黄金比1:1.618[=(√5+1)/2]の黄金六面体です.細めで尖ったほうがacute ,太めで平たいほうがobtuse と呼ばれていますが,2つずつacute とobtuse が集まれば菱形十二面体,5つずつ集まれば菱形二十面体,10個ずつ集まれば菱形三十面体となります.このうち,菱形二十面体と菱形三十面体は5重の対称軸をもっています.
2種類の菱面体を用いて,3次元を隙間なく埋める非周期的構造を作ることができるのですが,ペンローズのタイル貼りは,三次元空間を2種類の黄金菱面体で非周期的に埋めつくしたときの平面への投影図であり,5回対称性という物質の新しい状態を2次元的に模似したものになっています.
===================================