■φ形式の算法(その31)

  φ^-4=−3φ+5、 √5φ^-4=7φ−11

  φ^-3=2φ−3、 √5φ^-3=-4φ+7

  φ^-2=−φ+2、 √5φ^-2=3φ−4

  φ^-1=φ−1、 √5φ^-1=−φ+3

  φ^0=1、 √5φ^0=2φ−1

  φ^1=φ、 √5φ^1=φ+2

  φ^2=φ+1、 √5φ^2=3φ+1

  φ^3=2φ+1、 √5φ^3=4φ+3

  φ^4=3φ+2、 √5φ^4=7φ+4

  φ^5=5φ+3、 √5φ^5=11φ+7

  φ^6=8φ+5、 √5φ^6=18φ+11

 右辺mφ+nの係数m,nはフィボナッチ数列をなす.

===================================

 

一般に

  φ^n=Fnφ+Fn-1

と書くことができる。

もし、φとφ^2の組み合わせに分割するならば

  φ^3=1φ+1φ^2

  φ^4=1φ+2φ^2

  φ^5=2φ+3φ^2

  φ^6=3φ+5φ^2

  φ^n=Fn-2φ+Fn-1φ^2

と書くことができる。

===================================