■プラトン立体の二面角(その4)

 正多面体の二面角δは

  {3,3}→cosδ=1/3

  {3,4}→cosδ=−1/3

  {3,5}→cosδ=−√5/3

  {4,3}→cosδ=0

  {5,3}→cosδ=−√5/5

と計算される.

===================================

メッサーの式

sin(δ/2)=cos(π/q)/sin(π/p)

{(1-cosδ)/2}^1/2=cos(π/q)/sin(π/p)

と比較してみたい.

===================================

  {3,3}→1/3=(1-cosδ)/2→cosδ=1/3

  {3,4}→2/3=(1-cosδ)/2→cosδ=−1/3

  {3,5}→τ^2/3=(1-cosδ)/2→cosδ=−√5/3

  {4,3}→1/2=(1-cosδ)/2→cosδ=0

  {5,3}→4/(10-2√5)=(1-cosδ)/2→cosδ=−√5/5

===================================

半稜線に対する中心角φ

cosφ=cos(π/p)/sin(π/q)

ε=2φ

ε+双対多面体の二面角=πが成り立つ

  {3,3}→ε=2arccos1/√3=arccos(-1/3)

  {3,4}→ε=2arccos1/√2=arccos0

  {3,5}→ε=2arccos√(5+√5)/10)=arccos(√5/5)=arctan2

  {4,3}→ε=arccos(1/3)

  {5,3}→ε=2arccos(τ^2/√3)=arcsin(2/3)

===================================

δ=2arccos(tanφcotπ/p)=arccos(2(tanφcotπ/p)^2-1)は成り立つだろうか?

cosδ=2(tanφcotπ/p)^2-1

(1+cosδ)/2=(tanφcotπ/p)^2

(1+cosδ)/2・(tanπ/p)^2=(tanφ)^2

tanφ=tan(ε/2)

(tanφ)^2=(tan(ε/2))^2=(1-cosε)/(1+cosε)

(1+cosδ)/2・(tanπ/p)^2=(1-cosε)/(1+cosε)

  {3,3}→左辺=2/3・3=2,右辺=2

  {3,4}→左辺=1/3・3=1、右辺==1

  {3,5}→左辺=(1−√5/3)/2・3=(3-√5)/2,右辺=(1/√5-1)/(1/√5+1)=左辺

  {4,3}→左辺=1/2、右辺=1/2

  {5,3}→左辺=(7-3√5)/2、右辺(1-√5/3)/(1+√5/3)=右辺

===================================

あらゆる一様多面体において、

半稜線に対する中心角φ

頂点図形の外接円の半径Rとすると

双対図形の二面角θ

R=cosφ=sin(θ/2)

2φ+θ=π

が成り立つ。

===================================