■プラトン立体の二面角(その4)
正多面体の二面角δは
{3,3}→cosδ=1/3
{3,4}→cosδ=−1/3
{3,5}→cosδ=−√5/3
{4,3}→cosδ=0
{5,3}→cosδ=−√5/5
と計算される.
===================================
メッサーの式
sin(δ/2)=cos(π/q)/sin(π/p)
{(1-cosδ)/2}^1/2=cos(π/q)/sin(π/p)
と比較してみたい.
===================================
{3,3}→1/3=(1-cosδ)/2→cosδ=1/3
{3,4}→2/3=(1-cosδ)/2→cosδ=−1/3
{3,5}→τ^2/3=(1-cosδ)/2→cosδ=−√5/3
{4,3}→1/2=(1-cosδ)/2→cosδ=0
{5,3}→4/(10-2√5)=(1-cosδ)/2→cosδ=−√5/5
===================================
半稜線に対する中心角φ
cosφ=cos(π/p)/sin(π/q)
ε=2φ
ε+双対多面体の二面角=πが成り立つ
{3,3}→ε=2arccos1/√3=arccos(-1/3)
{3,4}→ε=2arccos1/√2=arccos0
{3,5}→ε=2arccos√(5+√5)/10)=arccos(√5/5)=arctan2
{4,3}→ε=arccos(1/3)
{5,3}→ε=2arccos(τ^2/√3)=arcsin(2/3)
===================================
δ=2arccos(tanφcotπ/p)=arccos(2(tanφcotπ/p)^2-1)は成り立つだろうか?
cosδ=2(tanφcotπ/p)^2-1
(1+cosδ)/2=(tanφcotπ/p)^2
(1+cosδ)/2・(tanπ/p)^2=(tanφ)^2
tanφ=tan(ε/2)
(tanφ)^2=(tan(ε/2))^2=(1-cosε)/(1+cosε)
(1+cosδ)/2・(tanπ/p)^2=(1-cosε)/(1+cosε)
{3,3}→左辺=2/3・3=2,右辺=2
{3,4}→左辺=1/3・3=1、右辺==1
{3,5}→左辺=(1−√5/3)/2・3=(3-√5)/2,右辺=(1/√5-1)/(1/√5+1)=左辺
{4,3}→左辺=1/2、右辺=1/2
{5,3}→左辺=(7-3√5)/2、右辺(1-√5/3)/(1+√5/3)=右辺
===================================
あらゆる一様多面体において、
半稜線に対する中心角φ
頂点図形の外接円の半径Rとすると
双対図形の二面角θ
R=cosφ=sin(θ/2)
2φ+θ=π
が成り立つ。
===================================