■二面角の計算(その13)
【1】オイラーの公式の使い方
正則とは限らない一般の多面体では
Σpi=p1+・・・+pf=2e,
Σqi=q1+・・・+qv=2e
となります.pi≧3,qi≧3ですから
2e≧3f,2e≧3v
このことから多面体は7本の辺をもつこと(e=7)は不可能であることが証明されます.
(証)e=7なる多面体が存在したと仮定すると,3f≦14,3v≦14.f,vは面,頂点の個数なので,3より大きな整数でなければならない.したがって,f=4,v=4,e=7となるが,これはオイラーの多面体定理
v−e+f=2
を満たさないので矛盾が生じる.
このことから
f≧4,v≧4,e≧6(e≠7)
であることがわかりましたが,他にオイラーの多面体定理で示される制限はないのでしょうか?
v−e+f=2,2e≧3f,2e≧3v
を組み合わせると,
2v+2f=2e+4≧3f+4 → f≦2v−4
2v+2f=2e+4≧3v+4 → v≦2f−4
これらはシュタイニッツの定理(1906年)と呼ばれますが,オイラー自身すでに
f≦2v−4,v≦2f−4
という結果を知っていたようです.
また,別の組合せ方をすると,
3v+3f=3e+6≦2e+3f → 3f−e≧6
3v+3f=3e+6≧2e+3v → 3v−e≧6
も得られます.
===================================