■正多面体の正多角形断面(その344)
X=1+2cos(2π/7)
7(X^2-X+1)/(X^2+X+2)^2=1/(2cos(π/7))^2
半角公式を使えばいったん次数は下がると思われる
===================================
7(X^2-X+1)/(X^2+X+2)^2=1/2(1+cos(2π/7))
7(X^2-X+1)/(X^2+X+2)^2=1/2(1+(X-1)/2)
7(X^2-X+1)/(X^2+X+2)^2=1/(1+X)
7(X+1)(X^2-X+1)=(X^2+X+2)^2
cos(2π/9)の場合も右辺は同じ
===================================
y=X-1=2cos(2π/7)とおく.
x=y+1
7(y+2)((y^2+2y+1)-(y+1)+1))=((y+1)^2+(y+1)+2)^2
7(y+2)(y^2+y+1)=(y^2+3y+4)^2
7(y^3+y^2+y+2y^2+2y+2)=(y^4+9y^2+16+6y^3+24y+8y^2)
7(y^3+3y^2+3y+2)=(y^4+6y^3+17y^2+24y+16)
(y^4-y^3-4y^2+3y+2)=0
===================================
θ=2π/9,9θ=2πより,
cos(4θ+5θ)=1
cos(4θ)=cos(5θ)
cos(4θ)=2cos^22θ−1=8cos^4θ−8cos^2θ+1
cos(5θ)=16cos^5θ−20cos^3θ+5cosθ
したがって,cos2π/9を解とする方程式は
8x^4−8x^2+1=16x^5-20x^3+5x
16x^5-8x^4−20x^3+8x^2+5x-1=0
16x^5-8x^4−20x^3+8x^2+5x-1=0
(x-1)(16x^4+8x^3-12x^2-4x+1)=0
y=2cos2π/9を解とする方程式は
y^5/2-y^4/2−5y^3/2+2y^2+5y/2-1=0
y^5-y^4−5y^3+4y^2+5y-2=0
(16x^4+8x^3-12x^2-4x+1)=0
y^4+y^3-3y^2-2y+1=0
===================================
cos(2θ)=cos(3θ)としても次数が合わない
x=cos2π/6=1/2を解とする方程式は
2x-1=0→4x^2-1=0に変更ni
y=2cos2π/6を解とする方程式は
y-1=0→y^2−1=0に変更
===================================
(X-1)/2=cos(2π/6)
x0=0, x1=1, x2=X
x3=X(x2-x1)+x0=X^2-X=X
x4=X(x3-x2)+x1=X^3-2X^2+1=1
x5=X(x4-x3)+x2=X^4-3X^3+X^2+2X=0
x6=1
Σxi=2X+2
===================================
f(x)/(2X+2)^2=1/(1+X)
(X+1)f(x)=(2X+2)^2
===================================
x=y+1
(y+2)f(y)=(2(y+1)+2)^2=(2y+4)^2=4y^2+16y+16
4y^2+16y+16-(y+2)f(y)=0
これが
y-1=0,y^2-2y+1=0,4y^2-8y+4=0→y^2-1=0,4y^2-4=0に変更
に等しい。
24y+12-(y+2)f(y)=0・・・NG
16y+20-(y+2)f(y)=0・・・に変更になったがNG
(y+2)(・・・)=0
16(y+2)(y^2+y)
逆向きに考える。
y=1を解とする方程式4y^2+ay+b=0を引くと
(16-a)y+(16-b)-(y+2)f(y)=0
(16-a):(16-b)=1:2
32-2a=16-b
b=2a-16
4y^2+ay+2a-16=0
3a-12=0,a=4,b=-8
12y+24-(y+2)f(y)=0
===================================
y=x-1
12(x+1)
===================================
12/(2x+2)^2=1/(X+1)
===================================