■正多面体の正多角形断面(その322)

α=π/(N+1)とおくと

求めたいのはr=N-1とおいて、

4sinxsin2xΣTn=Σsinrxsin(r+1)x={(N)sin2x-sin2Nx}/sinx

ここで、x=π/(N+1)であるから

sin2Nx=sin(2(N+1)-2)x=-sin2x

{(N)sin2x-sin2Nx}=(n+1)sin2x

ΣTn=Σsinrxsin(r+1)x={(N)sin2x-sin2Nx}/sinx4sinxsin2x

ΣTn=Σsinrxsin(r+1)x=(n+1)sin2x/sinx4sinxsin2x

ΣTn=Σsinrxsin(r+1)x=(n+1)/(2sinx)^2

Ti=sin(i+1)αsiniα/sinαsin2α

Ti/ΣTn=4sinαsin(i+1)αsiniα/sin2α

Ti/ΣTn=2sin(i+1)αsiniα/(n+1)cosα

Ti/ΣTn=-{cos(2i+1)α-cosα}/(n+1)cosα

===================================

検してみる

n=5,i=1

Ti/ΣTn=-{cos3α-cosα}/6cosα

Ti/ΣTn=-{4(cosα)^2-4}/6

Ti/ΣTn=-{3-4}/6

Ti/ΣTn=1/6・・・OK

n=6,i=2

Ti/ΣTn=-{cos5α-cosα}/6cosα

Ti/ΣTn=-{16(cosα)^4-20(cosα)^2+4}/6

Ti/ΣTn=-{9-15+4}/6

Ti/ΣTn=-{-2}/6

Ti/ΣTn=1/3・・・OK

===================================

Ti=sin(i+1)αsiniα/sinαsin2α=-1/2{cos(2i+1)α-cosα}/2(sinα)^2cosα

Ti=sin(i+1)αsiniα/sinαsin2α=-{cos(2i+1)α-cosα}/(2sinα)^2cosα

i=1のとき

T1=-{cos3α-cosα}/(2sinα)^2cosα

T1=-{4(cosα)^2-4}/(2sinα)^2=1

i=2のとき

T2=-{cos5α-cosα}/(2sinα)^2cosα

=-{16(cosα)^4-20(cosα)^2+4}/(2sinα)^2

=-{4(cosα)^4-5(cosα)^2+1}/(sinα)^2

=(4(cosα)^2-1)=2cos(2α)+1=X

===================================

Ti/ΣTn=-{cos(2i+1)α-cosα}/(n+1)cosα

Ti/ΣTn={1-cos(2i+1)α/cosα}/(n+1)

D^2=Σcos(2i+1)α/cosα}/(n+1)+2/(n+1)^2

D^2=1/(cosα)^2/(n+1)^2Σ{cos(2i+1)α}^2+ 2/(n+1)^2

しかし、

Σ{cos(2n+1)x}^2がわからない。

===================================

Σ{cos(2n+1)x}^2=Σ(1+cos(4n+2)x)/2

Σcos(4n+2)xが求められればよい。

ここで、

Σcos(2n+1)x=sin(2nx)/2sinx-cos(x)={sin(2nx)-2sinxcosx}/2sinx=-sin2x/sinx・・・n-1項まで,を使うと

Σcos(4n+2)x=Σcos(2n+1)(2x)=sin(4nx)/2sin2x-cos(2x)={sin(4nx)-2sin2xcos2x}/2sin2x=-sin4x/sin2x

Σ{cos(2n+1)x}^2=Σ(1+cos(4n+2)x)/2=(n-1)/2-sin(4x)/2sin2x

D^2=1/(cosα)^2/(n+1)^2Σ{cos(2i+1)α}^2+ 2/(n+1)^2

D^2=1/(cosα)^2/(n+1)^2{(n-1)/2-cos2α+2(cosα)^2}

D^2=1/(cosα)^2/(n+1)^2{(n+1)/2}

D^2=1/(cosα)^2/2(n+1)}

D^2=1/(2cosα)^2・2/(n+1)

===================================