■正多面体の正多角形断面(その322)
α=π/(N+1)とおくと
求めたいのはr=N-1とおいて、
4sinxsin2xΣTn=Σsinrxsin(r+1)x={(N)sin2x-sin2Nx}/sinx
ここで、x=π/(N+1)であるから
sin2Nx=sin(2(N+1)-2)x=-sin2x
{(N)sin2x-sin2Nx}=(n+1)sin2x
ΣTn=Σsinrxsin(r+1)x={(N)sin2x-sin2Nx}/sinx4sinxsin2x
ΣTn=Σsinrxsin(r+1)x=(n+1)sin2x/sinx4sinxsin2x
ΣTn=Σsinrxsin(r+1)x=(n+1)/(2sinx)^2
Ti=sin(i+1)αsiniα/sinαsin2α
Ti/ΣTn=4sinαsin(i+1)αsiniα/sin2α
Ti/ΣTn=2sin(i+1)αsiniα/(n+1)cosα
Ti/ΣTn=-{cos(2i+1)α-cosα}/(n+1)cosα
===================================
検してみる
n=5,i=1
Ti/ΣTn=-{cos3α-cosα}/6cosα
Ti/ΣTn=-{4(cosα)^2-4}/6
Ti/ΣTn=-{3-4}/6
Ti/ΣTn=1/6・・・OK
n=6,i=2
Ti/ΣTn=-{cos5α-cosα}/6cosα
Ti/ΣTn=-{16(cosα)^4-20(cosα)^2+4}/6
Ti/ΣTn=-{9-15+4}/6
Ti/ΣTn=-{-2}/6
Ti/ΣTn=1/3・・・OK
===================================
Ti=sin(i+1)αsiniα/sinαsin2α=-1/2{cos(2i+1)α-cosα}/2(sinα)^2cosα
Ti=sin(i+1)αsiniα/sinαsin2α=-{cos(2i+1)α-cosα}/(2sinα)^2cosα
i=1のとき
T1=-{cos3α-cosα}/(2sinα)^2cosα
T1=-{4(cosα)^2-4}/(2sinα)^2=1
i=2のとき
T2=-{cos5α-cosα}/(2sinα)^2cosα
=-{16(cosα)^4-20(cosα)^2+4}/(2sinα)^2
=-{4(cosα)^4-5(cosα)^2+1}/(sinα)^2
=(4(cosα)^2-1)=2cos(2α)+1=X
===================================
Ti/ΣTn=-{cos(2i+1)α-cosα}/(n+1)cosα
Ti/ΣTn={1-cos(2i+1)α/cosα}/(n+1)
D^2=Σcos(2i+1)α/cosα}/(n+1)+2/(n+1)^2
D^2=1/(cosα)^2/(n+1)^2Σ{cos(2i+1)α}^2+ 2/(n+1)^2
しかし、
Σ{cos(2n+1)x}^2がわからない。
===================================
Σ{cos(2n+1)x}^2=Σ(1+cos(4n+2)x)/2
Σcos(4n+2)xが求められればよい。
ここで、
Σcos(2n+1)x=sin(2nx)/2sinx-cos(x)={sin(2nx)-2sinxcosx}/2sinx=-sin2x/sinx・・・n-1項まで,を使うと
Σcos(4n+2)x=Σcos(2n+1)(2x)=sin(4nx)/2sin2x-cos(2x)={sin(4nx)-2sin2xcos2x}/2sin2x=-sin4x/sin2x
Σ{cos(2n+1)x}^2=Σ(1+cos(4n+2)x)/2=(n-1)/2-sin(4x)/2sin2x
D^2=1/(cosα)^2/(n+1)^2Σ{cos(2i+1)α}^2+ 2/(n+1)^2
D^2=1/(cosα)^2/(n+1)^2{(n-1)/2-cos2α+2(cosα)^2}
D^2=1/(cosα)^2/(n+1)^2{(n+1)/2}
D^2=1/(cosα)^2/2(n+1)}
D^2=1/(2cosα)^2・2/(n+1)
===================================