■大円弧多面体(その36)

球面n角形の辺の長さをa,内角をαとする。S=nα-(n-2)π

球面ニ等辺三角形は(π-α、π/2、π/2)であるからT=π-α

合計はs+nT=2π

3等分では大円にならない

a+α=π,a+b=2/πでなければならない

N=4 a=65.5302 b=24.4698

N=5 a=51.8273 b=38.1728

N=6 a=42.9414 b=47.0586

N=7 a=36.6884 b=53.3156

N=8 a=32.0313 b=57.9687

===================================

N=3 a=90 b=0

となるが、ガウスのペンタグラムの立体版のn=3を作ろうとすると、側面の二等辺三角形は2つずつ合体して二角形3つになる。

円弧は大円で270度で、これは計算が不要である。

===================================

  φ^-4=−3φ+5、 √5φ^-4=7φ−11

  φ^-3=2φ−3、 √5φ^-3=-4φ+7

  φ^-2=−φ+2、 √5φ^-2=3φ−4

  φ^-1=φ−1、 √5φ^-1=−φ+3

  φ^0=1、 √5φ^0=2φ−1

  φ^1=φ、 √5φ^1=φ+2

  φ^2=φ+1、 √5φ^2=3φ+1

  φ^3=2φ+1、 √5φ^3=4φ+3

  φ^4=3φ+2、 √5φ^4=7φ+4

  φ^5=5φ+3、 √5φ^5=11φ+7

  φ^6=8φ+5、 √5φ^6=18φ+11

 右辺mφ+nの係数m,nはフィボナッチ数列をなす.

===================================