■大円弧多面体(その17)

球面五角形の辺の長さをαとする。

a=(tanα)^2とおくと、1+a=a^2, a=(1+√5)/2=φ

tanα=√τ

cosα=1/τ=(√5-1)/2

===================================

【1】ガウスの五芒星公式

(1)3+5a=a^5

  φ^-4=−3φ+5、 √5φ^-4=7φ−11

  φ^-3=2φ−3、 √5φ^-3=-4φ+7

  φ^-2=−φ+2、 √5φ^-2=3φ−4

  φ^-1=φ−1、 √5φ^-1=−φ+3

  φ^0=1、 √5φ^0=2φ−1

  φ^1=φ、 √5φ^1=φ+2

  φ^2=φ+1、 √5φ^2=3φ+1

  φ^3=2φ+1、 √5φ^3=4φ+3

  φ^4=3φ+2、 √5φ^4=7φ+4

  φ^5=5φ+3、 √5φ^5=11φ+7

  φ^6=8φ+5、 √5φ^6=18φ+11

 右辺mφ+nの係数m,nはフィボナッチ数列をなす.

===================================

 

(2)ω+α=π

二等辺三角形において

cosα=(cosβ)^2+(sinβ)^2cos(π-ω)

cosα-cos(π-ω)=(cosβ)^2 {1-cos(π-ω)}

β=π/2,cosβ=0が成り立つためには

cosα-cos(π-ω)=0

ω+α=π

===================================