■素数距離

杉岡幹生氏よりのメールでお題をいただいた。

===================================

[定理]平面上にある4点集合で,どの2点間の距離も奇数であるものは存在しない  (グラハムの定理,1974年)

 面白い定理ですね。

ということは、

[系] 直線上にある4点集合で,どの2点間の距離も奇数であるものは存在しない  

となります。

では、

[Q]直線上にある4点集合で,どの2点間の距離も「素数」であるものは存在するか?

[A] これは存在します。例は6,8,11,13です。

では、

[Q]直線上にある「5点」集合で,どの2点間の距離も素数であるものは存在するか?

 これは存在しないような気がします。どうでしょうか。 (杉岡幹生)

===================================