■偏りのあるサイコロ(その39)

Q(x)・R(x)=x(x+1)(x^2+1)(x^2+x+1)(x^2−x+1)(x^4−x^2+1)

の続きである.

===================================

[1]

  Q(x)=x(x+1)(x^2+1)(x^2+x+1)(x^2−x+1)

  R(x)=(x^4−x^2+1)→不適

[2]

  Q(x)=x(x+1)(x^2+1)(x^2+x+1)(x^4−x^2+1)

  R(x)=(x^2−x+1)→不適

[3]

  Q(x)=x(x+1)(x^2+1)(x^2−x+1)(x^4−x^2+1)=x+x^4+x^7+x10→4面体サイコロ{0,4,7,10}

  R(x)=(x^2+x+1)→3面体サイコロ{0,1,2}

[4]

  Q(x)=x(x+1)(x^2+x+1)(x^2−x+1)(x^4−x^2+1)=x+x^2+x^5+x^6+x^9+x10→4面体サイコロ{1,2,5,6,9,10}

  R(x)=(x^2+1)→2面体サイコロ{0,2}

[5]

  Q(x)=x(x^2+1)(x^2+x+1)(x^2−x+1)(x^4−x^2+1)=x+x^3+x^5+x^7+x^9+x^11→6面体サイコロ{1,3,5,7,9,11}

  R(x)=(x+1)→2面体サイコロ{0,1}

===================================