■偏りのあるサイコロ(その24)

【3】n個のサイコロの出目の母関数

 これを一般化して,

[Q]n個のサイコロの6n面の目の決め方のうち,目の和の確率分布が普通のサイコロn個を降ったときの確率分布と等しくできるものをすべて求めよ.

[A]

  {P(x)}^n=x^2(x+1)^n(x^2+x+1)^n(x^2−x+1)^n

 したがって,

  P1(x)・・・Pn(x)}={Pk(x)}^n

  Pk(x)=x^ak(x+1)^bk(x^2+x+1)^ck(x^2−x+1)^dkの形でなければならない.

 ここで,Pk(0)=0 → ak≧1

  a1+a2+・・・+an=n → ak=1

  Pk(1)=6 → bk=1,ck=1

dk>2とすると係数が負になるので,0≦dk≦2であるが,d=0とd=2の場合は,{1,2,2,3,3,4}と{1,3,4,5,6,8}の目をもつサイコロ(シチャーマンのサイコロ)に相当する.

 したがって,唯一の解はシチャーマンのサイコロk組と普通のサイコロn−2k個からなる組み合わせである.

===================================