■偏りのあるサイコロ(その10)

 2個のサイコロを投げるとき,その目の和が2〜12になる場合の数は

  (1,2,3,4,5,6,5,4,3,2,1)

  {2,3,4,5,6,7,8,9,10,11,12}

 さらに3個目のサイコロを投げるとその目の和が3〜18になる場合の数は

(1,2,3,4,5,6,5,4,3,2,1)          x

  (1,2,3,4,5,6,5,4,3,2,1)        x^2

    (1,2,3,4,5,6,5,4,3,2,1)      x^3

      (1,2,3,4,5,6,5,4,3,2,1)    x^4

        (1,2,3,4,5,6,5,4,3,2,1)  x^5

          (1,2,3,4,5,6,5,4,3,2,1)x^6

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(1,3,6,10,15,21,25,27,27,25,21,15,10,6,3,1)

{3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18}

===================================

 一般に,n個のサイコロを投げるとき,その目の和がkにのなる場合の数は?

  P(x)=x+x^2+x^3+x^4+x^5+x^6

{P(x)}^n=(x+x^2+x^3+x^4+x^5+x^6)^n

=x^n(1−x^6)^n/(1−x)^n

 ここで,

(1−x^6)^n=Σ(−1)^k(n,k)x^6k

(1−x)^-n=1+nx+n(n+1)x^2/2!+n(n+1)(n+2)x^3/3!+・・・

===================================