■奇数の2乗−1の整除性(その9)

  a=F2k-1,b=F2k+1,c=F2k-1L2kF2k+1のとき

  (a+b+c)(1/a+1/b+1/c)を計算してみたい

===================================

フィボナッチ数列

f(x)=(x)/(1-x-x^2)=(1/√5)/(1-αx)-(1/√5)/(1-βx)

α=(1+√5)/2、β=(1-√5)/2,αβ=-1,α^2+β^2=3、β=-1/α

an=1/√5・{α^n-β^n}

===================================

F2n+1=Fn^2+Fn+1^2

===================================

(a2n+1)^2=1/5・{α^4n+2-2(αβ)^2n+1+β^4n+2}=1/5・{α^4n+2+2+β^4n+2}

(a2n-1)^2=1/5・{α^4n-2-2(αβ)^2n-1+β^4n-2}=1/5・{α^4n-2+2+β^4n-2}

(a^2+b^2+1)=1/5・{α^4n+2+2+β^4n+2+α^4n-2+2+β^4n-2+5}

(a^2+b^2+1)=1/5・{α^4n+2+β^4n+2+α^4n-2+β^4n-2+9}

===================================

a2n+1・a2n-1=1/5・{α^2n+1-β^2n+1}{α^2n-1-β^2n-1}

a2n+1・a2n-1=1/5・{α^4n+β^4n-α^2n+1β^2n-1-α^2n-1β^2n+1}

a2n+1・a2n-1=1/5・{α^4n+β^4n-α^2(αβ)^2n-1-(αβ)^2n-1β^2}

a2n+1・a2n-1=1/5・{α^4n+β^4n+α^2+β^2}

a2n+1・a2n-1=1/5・{α^4n+β^4n+3}

3a2n+1・a2n-1=1/5・{3α^4n+3β^4n+9}

===================================

5(a^2+b^2+1)-15ab

={α^4n+2+β^4n+2+α^4n-2+β^4n-2+9-3α^4n-3β^4n-9}

={α^4n(α^2+α^-2)+β^4n(β^2+β^-2)-3α^4n-3β^4n}

={α^4n(α^2+α^-2-3)+β^4n(β^2+β^-2-3)}

={α^4n(α^2+β^2-3)+β^4n(α^2+β^2-3)}

=0

===================================

a=F2k-1,b=F2k+1のとき、

(a^2+b^2+1)/ab=3

が成り立つ

===================================

リュカ数列の漸化式は

 a0=2,a1=1

an=an-1+an-2 (n≧2)

===================================

f(x)=Σanx^n=a0+a1x+Σanx^n (n≧2)

=a0+a1x+xΣan-1x^n-1+x^2Σan-2x^n-2 (n≧2)

=a0+a1x+x{f(x)-a0}+x^2f(x)

=2+x+x{f(x)-2}+x^2f(x)

===================================

f(x)=(2-x)/(1-x-x^2)=(1)/(1-αx)+(1)/(1-βx)

α=(1+√5)/2、β=(1-√5)/2

an={α^n+β^n}

最も近い整数をとると

Ln〜[{α^n}+1/2]

===================================

F2n=FnLn

L2n=(Ln)^2-2(-1)^n

F2n+1=(Fn)^2+(Fn+1)^2

===================================

a=1/√5・{α^2n-1-β^2n-1}

b=1/√5・{α^2n+1-β^2n+1}

L={α^2n+β^2n}

c=abL

ab=1/5・{α^2n+1-β^2n+1}{α^2n-1-β^2n-1}

ab=1/5・{α^4n+β^4n-α^2n-1β^2n-1(α^2+β^2)}

αβ=-1,α^2+β^2=3

ab=1/5・{α^4n+β^4n+3}

a+b=1/√5・{α^2n-1(α^2+1)-β^2n-1(β^2+1)}

(a+b)L=1/√5・{α^2n-1(α^2+1)-β^2n-1(β^2+1)}{α^2n+β^2n}

===================================

abL=1/5・{α^4n+β^4n+3}{α^2n+β^2n}

abL=1/5・{α^6n+β^6n+3{α^2n+β^2n}+α^4nβ^2n+α^2nβ^4}

c=abL=ab{α^2n+β^2n}

c=1/5・{α^4n+β^4n+3}{α^2n+β^2n}

a+b+c=(a+b)+abL

1/a+1/b+1/c=(a+b)/ab+1/abL={(a+b)L+1}/abL

(a+b+c)(1/a+1/b+1/c)={(a+b)/abL+1}{(a+b)L+1}

=(a+b)^2/ab+(a+b)/abL+ (a+b)L+1

(a^2+b^2+1)/ab=3より

(a^2+b^2+2ab+1)/ab=5

(a+b)^2/ab=5-1/ab

したがって、

(a+b)/abL-1/abが整数であればよい

=(a+b-L)/abL

a+b=Lであればよいのであるが、これが成り立つので右辺は整数である。

===================================