■正多面体の正多角形断面(その302)
「四面体ABCDがあり、ABの中点をM,CDの中点をNとする。MNを通る平面は常に四面体ABCDの体積を2等分する」
「2k-1次元単体A1A2・・・A2nのk本の辺A1A2,A3A4,・・・,A2k-1A2kの中点をB1,・・・,Bkとする。このときB1,・・・,Bkを通るすべての超平面は単体の体積を2等分する。」
===================================
この偶数次元版は辺→点の極限を考えることによって、
「2k次元単体A1A2・・・A2k,A2k+1のk本の辺A1A2,A3A4,・・・,A2k-1A2kの中点をB1,・・・,Bkとする。このときB1,・・・,BkとA2k+1を通るすべての超平面は単体の体積を2等分する。」
と思われる。
2次元の場合
「三角形ABCがあり、ABの中点をMとする。MCを通る直線は常に三角形ABCの体積を2等分する」は正しい
===================================
P1:(1,0,0,0,0)
P2:(0,1,0,0,0)
P3:(0,0,1,0,0)
P4:(0,0,0,1,0)
P5:(0,0,0,0,1)
P1P2の中点(1/2,1/2,0,0,0)
P3P4の中点(0,0,1/2,1/2,0)
P5(0,0,0,0,1)を通る超平面をx+by+cz+du+ev=fとする
1/2+b/2=f
c/2+d/2=f
e=f
f=1とおくと,e=1,b=1,c=1,d=1→この平面は
P2P3の中点(0,1/2,1/2,0,0)
P1P4の中点(1/2,0,0,1/2,0)も通るというよりどこでも通る
===================================
(τ^-1/√5,1/√5,τ^-1/√5,0,0)
(0,τ^-1/√5,1/√5,τ^-1/√5,0)
(0,0,τ^-1/√5,1/√5,τ^-1/√5)
(τ^-1/√5,0,0,τ^-1/√5,1/√5)
(1/√5,τ^-1/√5,0,0,τ^-1/√5)
この5点は超平面:x1+x2+x3+x4+x5=1上にある
===================================