■グラハム数(その7)
x^x^x^x^x^・・・=mのとき,
x^(x^x^x^x^x^・・・)=x^m=m
と書き変えることができて
x=m^1/m
===================================
[補題]関数y=x^1/xを微分せよ.
logy=logx^1/x=(logx)/x
((logx)/x)’=(1−logx)/x^2
y’=y(1−logx)/x^2=(1−logx+1)x^1/x-2
したがって,x=eのとき,最大値1.4446647861・・・をとる.
g(x)=(logx)/x
g’(x)=(1−logx)/x^2
について
loge/e>logπ/π
であるから,
e^π>π^e
実際,
e^π=23.14069・・・
π^e=22.45915・・・
3^2>2^3
===================================