■フリーズの幾何学(その33)

有理数p/qに対応するフォード円は、直径が1/q^2であって、数直線のp/qにおいて接する円である。

一方、分母が高々dの有理数からなる数列を位数dのファレイ数列といい、その各項は高さが1/d^2以上1/(d+1)^2未満の任意の水平線と交わるフォード円と対応している。

位数4のファレイ数列は[0/1,1/4,1/3,1/2,2/3,3/4,1/1]であることが分かる

また、これよりディオファントス近似に関する定理

|α-p/q|<1/2q^2を満たすものが無数に存在することも理解される

===================================

【1】ファレイ数列の生成

 n位のファレイ数列とは分子と分母がnを超えない既約な正の有理数全体を大きさの順に並べたものであるが,まず[0/1,1/1]からはじめ,(0+1)/(1+1)=1/2をはじめの2つの分数の間に挿入する.→[0/1,1/1]

漸次,隣接する2項p/qとr/sの間に中間分数

  (p+r)/(q+s)

を挿入する操作を可能な限り続けることによって得られる.

[0/1,1/1]

→[0/1,1/2,1/1](2位のファレイ数列)

→[0/1,1/3,1/2,2/3,1/1](3位のファレイ数列)

→[0/1,1/4,1/3,1/2,2/3,3/4,1/1](4位のファレイ数列)

→[0/1,1/4,1/3,2/5,1/2,3/5,2/3,3/4,1/1](5位のファレイ数列)

→[0/1,1/6,1/5,1/4,1/3,2/5,1/2,3/5,2/3,3/4,4/5,5/6,1/1](6位のファレイ数列)

→[・・・,0/1,1/7,1/6,1/5,1/4,2/7,1/3,2/5,3/7,1/2,4/7,3/5,2/3,5/7,3/4,4/5,5/6,6/7,1/1,・・・](7位のファレイ数列)

→[0/1,1/5,1/4,2/7,1/3,3/8,2/5,3/7,1/2,4/7,3/5,5/8,2/3,5/7,3/4,4/5,1/1](8位のファレイ数列)

が得られる.

 位数nのファレイ数列の長さは,オイラー関数φ(n)を用いて,

  1+φ(1)+φ(2)+・・・+φ(n−1)+φ(n)

 〜3(n/π)^2〜0.30396n^2

になる.この近似はnが大きくなるにつれてよくなっていく.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

 ファレイ数列では相隣り合う2項[m1/n1,m2/n2]の分母と分子からなる行列式の値m1n2−m2n1は±1である.すなわち,交差積m1n2とm2n1は連続する整数になる.

(証)[0/1,1/1]に対して,0・1−1・1=−1.ad−bc=−が成り立っているような[a/b,c/d]の間に,(a+c)/(b+d)を挿入すれば

  a(b+d)−b(a+c)=(a+c)d−(b+d)c=−1

 さらにl<nでかつa/b<k/l<c/dとなるようなk/lは存在しない.もし存在したとすれば

  k/l−a/b≧1/lb,c/d−k/l≧1/ld

  c/d−a/b≧(b+d)/lbd>1/bd

となって矛盾を生ずる.

===================================