■類数と不変式(その11)

【11】ヒルベルトの基底定理

 「基底」とはすべての不変式がそれらの線形結合として表される不変式の集合で,極小のものである.1846年にケイリーは2次形式の不変式を作り出す方法を考案し,1854年からの25年間に次数が6以下のすべての2元形式の基底を求めた.

 n=7になると言葉が一切はいらない数式が10ページにもおよび,当時可能な水準を超えた計算がはいり込んできた.そのため,ケイリーは7次以上の2元形式は無限基底をもつだろうと予想したほどである.次元が高くなるにしたがって,不変式を記述する長さは爆発的に増える.そして不変式を全部書き下ろすことのできるのはせいぜい6次元程度までなのである.

 任意の次数の2元形式に対する有限基底の存在は1868年,ゴルダンによって証明された.ゴルダン自身,3元2次形式や3元3次形式の基底を見いだしたが,一般の場合に有限個からなる基底が存在するかどうかはつぎの20年間では得られなかった.

 ゴルダンの基底定理の証明は計算的で難解であったが,1888年,ヒルベルトは2元形式に対するコルダンの結果にずっと簡単で非計算的な証明を与えた.さらに1890年,ヒルベルトは任意次数の変数の数も任意のどんな形式も「基底」をもつことを証明して数学界を驚かせた.

 ヒルベルトは基底定理「任意個の変数の任意次数の形式はすべて有限基底をもつ」を証明したが,その抽象的かつ非構成的な証明に対し,ゴルダンは「これは数学ではない.神学だ(That is not mathematics. That is theology.)」と抗議した話は有名である.不変式論の王・ゴルダンにかくいわしめるほど斬新な証明だったというわけである.

 不変式論は1840年代から1880年代にかけての代数の主要部門・根幹であったが,ワイルにいわせればヒルベルトの基底定理によりこの主題は殺された.しかしながら,20世紀後半には数理物理学における対称法則と保存法則として力強く復活,多くの数学的福音をもたらしたのである.

 Invariant theory has already been pronounced dead severel times, and like the phoenix has again and again rising from its ashes.

===================================

当時、不変式論の分野を率いていたのはゴルダンで、その最大の未解決問題は、変数は何個あるどんな次数の方程式にも必ず有限基底が存在することを証明することだった。

ゴルダンはすべての不変式を計算して、そこから基底を選び出す方法で、当時知られていた最も包括的な定理を証明していた。(2変数の2次方程式の場合、その基底は判別式のみからなる)

ところが1888年にヒルベルトが、不変式を一切計算せずに、すべてのケースで有限基底が存在することを証明した。

その結果を予期していなかったゴルダンは「これは数学ではない。神学だ」といったのである。

ヒルベルトにとって、この分野で手掛けたことはすべて片がついてしまって、その後、不変式の分野からきっぱり足を洗ったのであった。

===================================