■四元数を用いた鏡映と回転(その15)

[1]複素数の場合

  x=x0+x1i,y=y0+y1i

  xy=(x0y0−x1y)+(x0y1+x1y0)i

  |xy|^2=(x0y0−x1y)^2+(x0y1+x1y0)^2

=(x0^2+x1^2)(y0^2+y1^2)=|x|^2|y|^2

[2]三元数の場合

  x=x0+x1i+x2j,y=y0+y1i+y2j

  xy=(x0y0−x1y1−x2y2)

    +(x0y1+x1y0)i

    +(x0y2−x2y0)j

    +(x1y2)ij+(x2y1)ji

  |xy|^2=(x1^2+x2^2+x3^2)(y1^2+y2^2+y3^2)

=(x1y1+x2y2+x3y3)^2

+(x2y3−x3y2)^2+(x3y1−x1y3)^2+(x1y2−x2y1)^2

 xij=−ji=kの必要性が示唆される.

[3]四元数の場合

  x=x0+x1i+x2j+x3k,y=y0+y1i+y2j+y3k

  xy=(x0y0−x1y1−x2y2−x3y3)

    +(x0y1+x1y0+x2y3−x3y2)i

    +(x0y2−x1y3+x2y0+x3y1)j

    +(x0y3+x1y2−x2y1+x3y0)k

  |xy|^2(x0y0−x1y1−x2y2−x3y3)^2

    +(x0y1+x1y0+x2y3−x3y2)^2

    +(x0y2−x1y3+x2y0+x3y1)^2

    +(x0y3+x1y2−x2y1+x3y0)^2

=|x|^2|y|^2

=(x0^2+x1^2+x2^2+x3^2)(y0^2+y1^2+y2^2+y3^2)

=(x0y0+x1y1+x2y2+x3y3)^2

+(x0y1−x1y0)^2+(x0y2−x2y0)^2+(x0y3−x3y0)^2

+(x2y3−x3y2)^2+(x3y1−x1y3)^2+(x1y2−x2y1)^2

===================================