■有限体とガロア体(その94)
Fp上の射影平面にはp^2+p+1個の点とp^2+p+1本の直線があり、どの直線もp個の点を通り、どの点でもp本の直線が交わっている。
これに有限体Fp^3を対応させる。
m=p+1、p^2+p+1=m^2-m+1
===================================
【5】2^m元ガロア体の原始多項式
m=4の場合はπ(x)=1+x+x^4を用いたが、
m=2の場合、π(x)=1+x+x^2
m=3の場合、π(x)=1+x+x^3
m=4の場合、π(x)=1+x+x^4
m=5の場合、π(x)=1+x^2+x^5
m=6の場合、π(x)=1+x+x^6
を用いることによって実現される。
1+x+x^5はGF(2)上で既約ではなく、(1+x^2+x^3)(1+x+x^2)と因数分解される
[1]m=3,L=7:{1,2,4}
m=3=2^1+1→φ(7)/6=6/6=1通り
F2上の射影平面には7個の点と7本の直線があり、どの直線も3個の点を通り、どの点でも3本の直線が交わっている。
これに有限体F8を対応させる。
m=3の場合、π(x)=1+x+x^3
===================================
[2]m=4,L=13:{1,4,6,2},{1,7,2,3}
m=4=3^1+1→φ(13)/6=12/6=2通り
F3上の射影平面には13個の点と13本の直線があり、どの直線も4個の点を通り、どの点でも4本の直線が交わっている。
これに有限体F27を対応させる。
ここではx^3+2x+1=0,x^3=2+xを用いる。
===================================
[3]m=5,L=21:{1,3,10,2,5}
φ(21)=21(1−1/3)(1−1/7)=12
m=5=2^2+1→φ(21)/12=12/12=1通り
F4上の射影平面には21個の点と21本の直線があり、どの直線も5個の点を通り、どの点でも5本の直線が交わっている。
これに有限体F64を対応させる。
ここではx^3+x^2+x+ω=0,x^3=ω+x+x^2、ω~2=1+ωを用いる。
===================================
[4]m=6,L=31:{1,2,5,4,6,13}
m=6=5^1+1→φ(31)/6=30/6=5通り
F5上の射影平面には31個の点と31本の直線があり、どの直線も6個の点を通り、どの点でも6本の直線が交わっている。
これに有限体F125を対応させる。
ここではx^3+4x+3=0,x^3=2+xを用いる。
{1,14,4,2,3,7}
{1,3,2,7,8,10}
{1,5,12,4,7,2}
{1,3,6,2,5,14}
===================================