■フィボナッチ数列とトリボナッチ数列(その22)
そろそろd→1/2証明しておきたい。
x=Σancosnθ
y=Σansinnθ
と有限フーリエ級数で表されるので、n→∞のとき、パーセバルの公式を使えば極限値を求めることができると思われる。
したがって、{an}を求めなければならない。
===================================
Tn=-{(β-γ)α^n+1+(γ-α)β^n+1+(α-β)γ^n+1}/(α-β)(β-γ)(γ-α)
α=1
β=ω
γ=ω^-1
ω=cos(2π/(N+1))+isin(2π/(N+1))
ω^-1=cos(2π/(N+1))-isin(2π/(N+1))
(β-γ)=2isin(2π/(N+1))
(γ-α)β^n+1+(α-β)γ^n+1=(β^n-γ^n)-(β^n+1-γ^n+1)=2i{sin(2nπ/(N+1))-sin(2(n+1)π/(N+1))}
=-4icos((2n+1)π/(N+1))sin(π/(N+1))
(α-β)(γ-α)=(1-ω)(ω^-1-1) =ω^-1-1-1+ω=2cos(2π/(N+1))-2=-4{sin(π/(N+1))}^2
分子=2isin(2π/(N+1))-4icos((2n+1)π/(N+1))sin(π/(N+1))
=4isin(π/(N+1))cos(π/(N+1))-4icos((2n+1)π/(N+1))sin(π/(N+1))
分母=-4{sin(π/(N+1))}^2・2isin(2π/(N+1))
=-16i{sin(π/(N+1))}^2・sin(π/(N+1))cos(π/(N+1))
Tn=1/4・{cos(π/(N+1))-cos((2n+1)π/(N+1))}/{sin(π/(N+1))}^2cos(π/(N+1))
{cos(π/(N+1))-cos((2n+1)π/(N+1))}=-2sin(n+1)π/(N+1))sin(-n)π/(N+1))
Tn=sin(n+1)π/(N+1))sin(n)π/(N+1))/2{sin(π/(N+1))}^2cos(π/(N+1))
Tn=sin(n+1)π/(N+1))sin(nπ/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))
===================================
n=0のときTn=0
n=1のとき、Tn=sin(2π/(N+1))sin(π/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))=1
n=2のとき、Tn=sin(3π/(N+1))sin(2π/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))=-4{sin(π/(N+1))}^2+3
X=1+2cos(2π/(n+1))=1+2(1-2{sin(π/(N+1))}^2)より
n=2のとき、Tn=sin(3π/(N+1))sin(2π/(N+1))/{sin(π/(N+1))}{sin(2π/(N+1))=-4{sin(π/(N+1))}^2+3=X
===================================