■コペルニクスの定理(その7)
【2】円の直径が作る直線族の包絡線
(Q)固定された円の内部に直径が1/2のもう一つの円が入っているとする.小さい円が大きい円に内接し滑ることなく大きい円に沿って回転すると,動円の直径によって覆われる点集合はどのようなものか?
===================================
(A)コペルニクスの定理により,動円の直径の両端は互いに直交する2直線に端点を載せながら動きます.直径の中点は半径が動円の半径の半分の円,中点以外の点は楕円を描きます.そして,この集合の境界をなす曲線はアステロイドになります.
→疑義あり。(その11)に改めて記述する。
アステロイドは固定された円の内部に直径が1/4のもう一つの円が入っていて,小さい円が大きい円に内接し滑ることなく大きい円に沿って回転するときの動円上の定点の軌跡です.
===================================