■直観幾何学研究会2022(その2)

この問題には続きがあり、三角形の辺まで距離のq乗和

  Σ|x−P|^q

を最小にする問題では

q=1の場合が最も大きい内角をもつ頂点

q=2の場合がルモアーヌ点

q=∞の場合が内心

それでは・・・

[Q]qを変数とするときの点Pが描く曲線は?

===================================

似たような問題ですが、△ABCの三辺長をa,b,cとするとき重心座標の比が(a^q,b^q,c^q)で表される点がどういう点か?

また、qを0から+∞に動かしたときの軌跡(曲線)がどうなるか?

q=0:重心

q=1:内心

q=2:ルモワーヌ点

q=+∞:最大辺に対する頂点

強いていえば

q=-1:内心の等長共役点

q=-∞:最大辺に対する頂点

コンピュータでqを動かしたときの軌跡を描いてみると面白いかもしれません。いずれにしても簡単な曲線ではないと思います. 

===================================