■直観幾何学研究会2022(その2)
この問題には続きがあり、三角形の辺まで距離のq乗和
Σ|x−P|^q
を最小にする問題では
q=1の場合が最も大きい内角をもつ頂点
q=2の場合がルモアーヌ点
q=∞の場合が内心
それでは・・・
[Q]qを変数とするときの点Pが描く曲線は?
===================================
似たような問題ですが、△ABCの三辺長をa,b,cとするとき重心座標の比が(a^q,b^q,c^q)で表される点がどういう点か?
また、qを0から+∞に動かしたときの軌跡(曲線)がどうなるか?
q=0:重心
q=1:内心
q=2:ルモワーヌ点
q=+∞:最大辺に対する頂点
強いていえば
q=-1:内心の等長共役点
q=-∞:最大辺に対する頂点
コンピュータでqを動かしたときの軌跡を描いてみると面白いかもしれません。いずれにしても簡単な曲線ではないと思います.
===================================