■正多面体の正多角形断面(その230)
[Q] sin10°・sin50°・sin70°=?
[A} sin10°・sin50°・sin70°・2cos10°・2cos50°・2cos70°
=sin20°・sin100°・sin140°
=cos70°・cos10°・cos50°
したがって、
sin10°・sin50°・sin70°=1/8
このほかに
=sin5π/14・sin3π/14・sinπ/14=1/8も見つかった。
===================================
[x<45<y<z<90]とする。
cosx・cosy・coszをかけて→sin2x・sin2y・sin2z=cos(90-2x)・cos(2y-90)・cos(2z-90)
90-2x=z,90-2x=[0,90]
2y-90=x,2y-90=[0,90]
2z-90=y,2z-90=[0,90]
これ以外に右辺が1/8となる組み合わせはないのだろうか?
===================================
[45cosx・cosy・coszをかけて→sin2x・sin2y・sin2z=cos(2x-90)・cos(2y-90)・cos(2z-90)
2x-90=x,2x-90=[0,90]
2y-90=y,2y-90=[0,90]
2z-90=z,2z-90=[0,90]:NG
===================================
[x<45<y<z<90]とする。
cosx・cosy・coszをかけて→sin2x・sin2y・sin2z=cos(90-2x)・cos(2y-90)・cos(2z-90)
90-2x=x,90-2x=[0,90]
2y-90=y,2y-90=[0,90]
2z-90=z,2z-90=[0,90]:x=π/6、y=π/2、z=π/2
90-2x=y,90-2x=[0,90]
2y-90=x,2y-90=[0,90]
2z-90=z,2z-90=[0,90]:x=π/10、y=3π/10、z=π/2
===================================
ここで、解が見つかるはずである。
[x<y<45<z<90]とする。
cosx・cosy・coszをかけて→sin2x・sin2y・sin2z=cos(90-2x)・cos(9-2y)・cos(2z-90)
90-2x=y,90-2x=[0,90]
90-2y=x,90-2y=[0,90]
2z-90=z,2z-90=[0,90]:x=π/6,y=π/6,z=π/2
90-2x=z,90-2x=[0,90]
90-2y=y,90-2y=[0,90]
2z-90=x,2z-90=[0,90]:→x=π/10,y=π/6,z=3π/10
90-2x=z,90-2x=[0,90]
90-2y=x,90-2y=[0,90]
2z-90=y,2z-90=[0,90]:→x=π/14,y=3π/14,z=5π/14
===================================
[x<y<z<45]とする。
cosx・cosy・coszをかけて→sin2x・sin2y・sin2z=cos(90-2x)・cos(9-2y)・cos(90-2z)
90-2x=z,90-2x=[0,90]
90-2y=y,90-2y=[0,90]
90-2z=x,90-2z0=[0,90]:x=y=z=30
===================================